Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913075488> ?p ?o ?g. }
- W2913075488 abstract "Adverse drug events (ADEs) as well as other preventable adverse events in the hospital setting incur a yearly monetary cost of approximately $3.5 billion, in the United States alone. Therefore, it is of paramount importance to reduce the impact and prevalence of ADEs within the healthcare sector, not only since it will result in reducing human suffering, but also as a means to substantially reduce economical strains on the healthcare system. One approach to mitigate this problem is to employ predictive models. While existing methods have been focusing on the exploitation of static features, limited attention has been given to temporal features.In this paper, we present a novel classification framework for detecting ADEs in complex Electronic health records (EHRs) by exploiting the temporality and sparsity of the underlying features. The proposed framework consists of three phases for transforming sparse and multi-variate time series features into a single-valued feature representation, which can then be used by any classifier. Moreover, we propose and evaluate three different strategies for leveraging feature sparsity by incorporating it into the new representation.A large-scale evaluation on 15 ADE datasets extracted from a real-world EHR system shows that the proposed framework achieves significantly improved predictive performance compared to state-of-the-art. Moreover, our framework can reveal features that are clinically consistent with medical findings on ADE detection.Our study and experimental findings demonstrate that temporal multi-variate features of variable length and with high sparsity can be effectively utilized to predict ADEs from EHRs. Two key advantages of our framework are that it is method agnostic, i.e., versatile, and of low computational cost, i.e., fast; hence providing an important building block for future exploitation within the domain of machine learning from EHRs." @default.
- W2913075488 created "2019-02-21" @default.
- W2913075488 creator A5013519991 @default.
- W2913075488 creator A5019100555 @default.
- W2913075488 creator A5044999523 @default.
- W2913075488 creator A5049843644 @default.
- W2913075488 date "2019-01-10" @default.
- W2913075488 modified "2023-10-16" @default.
- W2913075488 title "A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records" @default.
- W2913075488 cites W1152166452 @default.
- W2913075488 cites W1517922511 @default.
- W2913075488 cites W1574415105 @default.
- W2913075488 cites W187156975 @default.
- W2913075488 cites W1876097930 @default.
- W2913075488 cites W1959452164 @default.
- W2913075488 cites W1976191921 @default.
- W2913075488 cites W1984674851 @default.
- W2913075488 cites W1989037929 @default.
- W2913075488 cites W1989484996 @default.
- W2913075488 cites W1991567209 @default.
- W2913075488 cites W1998780354 @default.
- W2913075488 cites W2004910511 @default.
- W2913075488 cites W2015462679 @default.
- W2913075488 cites W2018025378 @default.
- W2913075488 cites W2029438113 @default.
- W2913075488 cites W2030790437 @default.
- W2913075488 cites W2034570973 @default.
- W2913075488 cites W2041888817 @default.
- W2913075488 cites W2059331879 @default.
- W2913075488 cites W2060341629 @default.
- W2913075488 cites W2062851576 @default.
- W2913075488 cites W2087280362 @default.
- W2913075488 cites W2093889817 @default.
- W2913075488 cites W2098740506 @default.
- W2913075488 cites W2109206523 @default.
- W2913075488 cites W2110704543 @default.
- W2913075488 cites W2124972954 @default.
- W2913075488 cites W2125097277 @default.
- W2913075488 cites W2135102212 @default.
- W2913075488 cites W2155653793 @default.
- W2913075488 cites W2157825442 @default.
- W2913075488 cites W2158698691 @default.
- W2913075488 cites W2164274563 @default.
- W2913075488 cites W2166213950 @default.
- W2913075488 cites W2172767501 @default.
- W2913075488 cites W2209812445 @default.
- W2913075488 cites W2212544902 @default.
- W2913075488 cites W2234917292 @default.
- W2913075488 cites W2246742356 @default.
- W2913075488 cites W2308439215 @default.
- W2913075488 cites W2341871588 @default.
- W2913075488 cites W2402972623 @default.
- W2913075488 cites W2468738844 @default.
- W2913075488 cites W2512716582 @default.
- W2913075488 cites W2559646245 @default.
- W2913075488 cites W2560004025 @default.
- W2913075488 cites W2806701421 @default.
- W2913075488 cites W2811261564 @default.
- W2913075488 cites W2911964244 @default.
- W2913075488 cites W2914869261 @default.
- W2913075488 cites W4234007352 @default.
- W2913075488 cites W4252684946 @default.
- W2913075488 cites W953674941 @default.
- W2913075488 doi "https://doi.org/10.1186/s12911-018-0717-4" @default.
- W2913075488 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6327495" @default.
- W2913075488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30630486" @default.
- W2913075488 hasPublicationYear "2019" @default.
- W2913075488 type Work @default.
- W2913075488 sameAs 2913075488 @default.
- W2913075488 citedByCount "29" @default.
- W2913075488 countsByYear W29130754882019 @default.
- W2913075488 countsByYear W29130754882020 @default.
- W2913075488 countsByYear W29130754882021 @default.
- W2913075488 countsByYear W29130754882022 @default.
- W2913075488 countsByYear W29130754882023 @default.
- W2913075488 crossrefType "journal-article" @default.
- W2913075488 hasAuthorship W2913075488A5013519991 @default.
- W2913075488 hasAuthorship W2913075488A5019100555 @default.
- W2913075488 hasAuthorship W2913075488A5044999523 @default.
- W2913075488 hasAuthorship W2913075488A5049843644 @default.
- W2913075488 hasBestOaLocation W29130754881 @default.
- W2913075488 hasConcept C105795698 @default.
- W2913075488 hasConcept C119857082 @default.
- W2913075488 hasConcept C122123141 @default.
- W2913075488 hasConcept C124101348 @default.
- W2913075488 hasConcept C138885662 @default.
- W2913075488 hasConcept C141547133 @default.
- W2913075488 hasConcept C145642194 @default.
- W2913075488 hasConcept C154945302 @default.
- W2913075488 hasConcept C160735492 @default.
- W2913075488 hasConcept C162324750 @default.
- W2913075488 hasConcept C169258074 @default.
- W2913075488 hasConcept C2776401178 @default.
- W2913075488 hasConcept C3019952477 @default.
- W2913075488 hasConcept C33923547 @default.
- W2913075488 hasConcept C41008148 @default.
- W2913075488 hasConcept C41895202 @default.
- W2913075488 hasConcept C50522688 @default.
- W2913075488 hasConcept C95623464 @default.
- W2913075488 hasConceptScore W2913075488C105795698 @default.