Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913142421> ?p ?o ?g. }
- W2913142421 endingPage "13" @default.
- W2913142421 startingPage "1" @default.
- W2913142421 abstract "Plant breeders normally require an assessment of various plant traits to breed new crop varieties or improve processes in crop production. This assessment, generally referred to as plant phenotyping, often involves significant manual measurement, which creates a bottleneck in breeding programs. Using current high-density terrestrial laser scanning systems presents an opportunity to measure individual plants and organ-specific traits to support various crop improvement and agronomic initiatives. The main goal of this study was to assess the feasibility of applying terrestrial laser scanning (TLS) data for estimating counts and individual dimensions (panicle length, width, and height) of sorghum panicles – the flowering parts of sorghum plants that eventually yield seed when the plants mature. To achieve our goal, we developed and assessed a density-based clustering approach to derive the targeted information from TLS data. Estimated individual panicle data (panicle counts and individual panicle dimensions) from a random sample of 20 plots were compared with LiDAR-derived panicle data. Overall, panicles were detected (counted) with an overall accuracy of 89.3% with a 10.7% omission and 14.3% commission rate. Omission errors were caused mainly by poor point cloud sampling, while commission errors were driven by spectral similarities between panicle and other crop components such as dry foliage. Estimated panicle dimensions were highly correlated with reference LiDAR-derived panicle measurements (Panicle length: Pearson correlation (r) = 0.88, Root mean square error (RMSE) = 3.10 cm; panicle width: r = 0.79, RMSE = 1.67 cm; plant height: r = 1.00, RMSE = 0.80 cm). A plot-level comparison involving 43 plots was also carried out between estimated panicle data and panicle data derived from a sample of harvested panicles and showed moderate to high correlations between the two datasets (Panicle length: r = 0.79, RMSE = 2.48 cm; panicle width: r = 0.63, RMSE = 1.49 cm; plant height: r = 0.86, RMSE = 11.4 cm). The lower correlations with field data may be reflective of the impact of sampling rates, the compaction and dry down of panicles after harvest and experimental error in general. An analysis of the impact of simulated noise on estimates, showed that the developed method is moderately robust to lower noise levels (<30%) but its performance deteriorates at high levels showing the critical need for prior noise filtering. Overall, this study shows that TLS and similar point cloud data has the potential to expedite field-based plant phenotyping tasks." @default.
- W2913142421 created "2019-02-21" @default.
- W2913142421 creator A5003462154 @default.
- W2913142421 creator A5015263215 @default.
- W2913142421 creator A5051619831 @default.
- W2913142421 creator A5062249054 @default.
- W2913142421 creator A5068551973 @default.
- W2913142421 date "2019-03-01" @default.
- W2913142421 modified "2023-10-05" @default.
- W2913142421 title "Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial lidar data" @default.
- W2913142421 cites W1506179068 @default.
- W2913142421 cites W1975377458 @default.
- W2913142421 cites W1982372327 @default.
- W2913142421 cites W1985045038 @default.
- W2913142421 cites W1986473362 @default.
- W2913142421 cites W1991348668 @default.
- W2913142421 cites W1995494326 @default.
- W2913142421 cites W1996716416 @default.
- W2913142421 cites W2007924209 @default.
- W2913142421 cites W2024544328 @default.
- W2913142421 cites W2028481299 @default.
- W2913142421 cites W2033449521 @default.
- W2913142421 cites W2042976030 @default.
- W2913142421 cites W2044544958 @default.
- W2913142421 cites W2057992256 @default.
- W2913142421 cites W2060224812 @default.
- W2913142421 cites W2067853114 @default.
- W2913142421 cites W2067877300 @default.
- W2913142421 cites W2069747286 @default.
- W2913142421 cites W2072723786 @default.
- W2913142421 cites W2077202344 @default.
- W2913142421 cites W2099717788 @default.
- W2913142421 cites W2108358988 @default.
- W2913142421 cites W2110441968 @default.
- W2913142421 cites W2128866545 @default.
- W2913142421 cites W2131788804 @default.
- W2913142421 cites W2133059825 @default.
- W2913142421 cites W2155714399 @default.
- W2913142421 cites W2158411533 @default.
- W2913142421 cites W2160642098 @default.
- W2913142421 cites W2163450852 @default.
- W2913142421 cites W2165835468 @default.
- W2913142421 cites W2288090578 @default.
- W2913142421 cites W2331376978 @default.
- W2913142421 cites W2431554920 @default.
- W2913142421 cites W2479553770 @default.
- W2913142421 cites W2479938810 @default.
- W2913142421 cites W2541630240 @default.
- W2913142421 cites W2586943024 @default.
- W2913142421 cites W2598228637 @default.
- W2913142421 cites W2625545923 @default.
- W2913142421 cites W2626523133 @default.
- W2913142421 cites W2682091560 @default.
- W2913142421 cites W2755871013 @default.
- W2913142421 cites W2802890933 @default.
- W2913142421 cites W2804813804 @default.
- W2913142421 cites W2885553657 @default.
- W2913142421 cites W2799646052 @default.
- W2913142421 doi "https://doi.org/10.1016/j.isprsjprs.2018.12.015" @default.
- W2913142421 hasPublicationYear "2019" @default.
- W2913142421 type Work @default.
- W2913142421 sameAs 2913142421 @default.
- W2913142421 citedByCount "35" @default.
- W2913142421 countsByYear W29131424212019 @default.
- W2913142421 countsByYear W29131424212020 @default.
- W2913142421 countsByYear W29131424212021 @default.
- W2913142421 countsByYear W29131424212022 @default.
- W2913142421 countsByYear W29131424212023 @default.
- W2913142421 crossrefType "journal-article" @default.
- W2913142421 hasAuthorship W2913142421A5003462154 @default.
- W2913142421 hasAuthorship W2913142421A5015263215 @default.
- W2913142421 hasAuthorship W2913142421A5051619831 @default.
- W2913142421 hasAuthorship W2913142421A5062249054 @default.
- W2913142421 hasAuthorship W2913142421A5068551973 @default.
- W2913142421 hasBestOaLocation W29131424211 @default.
- W2913142421 hasConcept C105795698 @default.
- W2913142421 hasConcept C139945424 @default.
- W2913142421 hasConcept C2778157034 @default.
- W2913142421 hasConcept C33923547 @default.
- W2913142421 hasConcept C6557445 @default.
- W2913142421 hasConcept C75337361 @default.
- W2913142421 hasConcept C86803240 @default.
- W2913142421 hasConceptScore W2913142421C105795698 @default.
- W2913142421 hasConceptScore W2913142421C139945424 @default.
- W2913142421 hasConceptScore W2913142421C2778157034 @default.
- W2913142421 hasConceptScore W2913142421C33923547 @default.
- W2913142421 hasConceptScore W2913142421C6557445 @default.
- W2913142421 hasConceptScore W2913142421C75337361 @default.
- W2913142421 hasConceptScore W2913142421C86803240 @default.
- W2913142421 hasFunder F4320306114 @default.
- W2913142421 hasLocation W29131424211 @default.
- W2913142421 hasOpenAccess W2913142421 @default.
- W2913142421 hasPrimaryLocation W29131424211 @default.
- W2913142421 hasRelatedWork W2014954619 @default.
- W2913142421 hasRelatedWork W2035322360 @default.
- W2913142421 hasRelatedWork W2064575979 @default.
- W2913142421 hasRelatedWork W2285070514 @default.
- W2913142421 hasRelatedWork W2947189712 @default.