Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913149748> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2913149748 endingPage "420" @default.
- W2913149748 startingPage "401" @default.
- W2913149748 abstract "Assessing the exposure of an individual or population is a challenging statistical task. Borrowing from the concept of the genome in genetics, recently the concept of an exposome has emerged to help explain the complexities of exposure assessment and guide research in this area. According to the Centers for Disease Control and Prevention, “The exposome can be defined as the measure of all the exposures of an individual in a lifetime and how those exposures relate to health.” The simplest algorithm to estimate concentration at an unmonitored locations is to use the measured value for the nearest monitoring location. The estimated nearest-neighbor concentration surface is then piecewice constant over Voronoi polygons around the monitors. This is a special case of K-nearest neighbor (KNN) interpolation. Inverse distance weighting (also known as kernel smoothing) is an extension to KNN that weights locations according to their distance from the prediction location." @default.
- W2913149748 created "2019-02-21" @default.
- W2913149748 creator A5020087218 @default.
- W2913149748 creator A5047245641 @default.
- W2913149748 date "2019-01-15" @default.
- W2913149748 modified "2023-10-05" @default.
- W2913149748 title "Statistical models of vegetation fires: Spatial and temporal patterns" @default.
- W2913149748 cites W2139443043 @default.
- W2913149748 doi "https://doi.org/10.1201/9781315152509-19" @default.
- W2913149748 hasPublicationYear "2019" @default.
- W2913149748 type Work @default.
- W2913149748 sameAs 2913149748 @default.
- W2913149748 citedByCount "5" @default.
- W2913149748 countsByYear W29131497482023 @default.
- W2913149748 crossrefType "book-chapter" @default.
- W2913149748 hasAuthorship W2913149748A5020087218 @default.
- W2913149748 hasAuthorship W2913149748A5047245641 @default.
- W2913149748 hasConcept C100970517 @default.
- W2913149748 hasConcept C142724271 @default.
- W2913149748 hasConcept C205649164 @default.
- W2913149748 hasConcept C2776133958 @default.
- W2913149748 hasConcept C39432304 @default.
- W2913149748 hasConcept C58640448 @default.
- W2913149748 hasConcept C71924100 @default.
- W2913149748 hasConceptScore W2913149748C100970517 @default.
- W2913149748 hasConceptScore W2913149748C142724271 @default.
- W2913149748 hasConceptScore W2913149748C205649164 @default.
- W2913149748 hasConceptScore W2913149748C2776133958 @default.
- W2913149748 hasConceptScore W2913149748C39432304 @default.
- W2913149748 hasConceptScore W2913149748C58640448 @default.
- W2913149748 hasConceptScore W2913149748C71924100 @default.
- W2913149748 hasLocation W29131497481 @default.
- W2913149748 hasOpenAccess W2913149748 @default.
- W2913149748 hasPrimaryLocation W29131497481 @default.
- W2913149748 hasRelatedWork W1129939820 @default.
- W2913149748 hasRelatedWork W1482410789 @default.
- W2913149748 hasRelatedWork W1598007992 @default.
- W2913149748 hasRelatedWork W2308616044 @default.
- W2913149748 hasRelatedWork W2316019709 @default.
- W2913149748 hasRelatedWork W2364494473 @default.
- W2913149748 hasRelatedWork W2365319581 @default.
- W2913149748 hasRelatedWork W2748952813 @default.
- W2913149748 hasRelatedWork W2899084033 @default.
- W2913149748 hasRelatedWork W4309269549 @default.
- W2913149748 isParatext "false" @default.
- W2913149748 isRetracted "false" @default.
- W2913149748 magId "2913149748" @default.
- W2913149748 workType "book-chapter" @default.