Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913149819> ?p ?o ?g. }
- W2913149819 abstract "Facial recognition as of biometric authentication used in the field of security, military, finance and daily use is become a trend or famous, because of its natural and not intrusive nature. Many methods for face recognition such as holistic learning, the use of local features, shallow learning and deep learning, some methods are susceptible to variations in pose change, illumination, expression and age variation. State of the art of face recognition today is a deep learning technique that delivers high accuracy. In this paper author replicate an face recognition using deep learning architecture called OpenFace Convolutional Neural Network. In this research author make variation on the size of image, color dept and age, and see how that factor impact on accuracy of face recognition in that architecture. As the result from the research, the accuracy of a model depends on the image size, color depth, and age variation, but in OpenFace CNN that recognition still provides fairly good accuracy when reducing the size of image and color depth, as long as the image can still be detected on the landmark facial, so the alignment process can be done on the face image." @default.
- W2913149819 created "2019-02-21" @default.
- W2913149819 creator A5000614683 @default.
- W2913149819 creator A5014207051 @default.
- W2913149819 creator A5034535767 @default.
- W2913149819 creator A5036949688 @default.
- W2913149819 creator A5089896404 @default.
- W2913149819 date "2018-09-01" @default.
- W2913149819 modified "2023-09-27" @default.
- W2913149819 title "Image Size, Color Depth, Age variant on Convolution Neural Network" @default.
- W2913149819 cites W1505701726 @default.
- W2913149819 cites W1622838444 @default.
- W2913149819 cites W1686810756 @default.
- W2913149819 cites W1703179648 @default.
- W2913149819 cites W1780066064 @default.
- W2913149819 cites W1950843348 @default.
- W2913149819 cites W1951319388 @default.
- W2913149819 cites W1955369839 @default.
- W2913149819 cites W1975056068 @default.
- W2913149819 cites W1997129315 @default.
- W2913149819 cites W2097117768 @default.
- W2913149819 cites W2114588272 @default.
- W2913149819 cites W2117072267 @default.
- W2913149819 cites W2117539524 @default.
- W2913149819 cites W2117553576 @default.
- W2913149819 cites W2117913389 @default.
- W2913149819 cites W2120100419 @default.
- W2913149819 cites W2121647436 @default.
- W2913149819 cites W2129812935 @default.
- W2913149819 cites W2131024102 @default.
- W2913149819 cites W2132467081 @default.
- W2913149819 cites W2136922672 @default.
- W2913149819 cites W2137857332 @default.
- W2913149819 cites W2138451337 @default.
- W2913149819 cites W2140609507 @default.
- W2913149819 cites W2142780847 @default.
- W2913149819 cites W2143784448 @default.
- W2913149819 cites W2144172034 @default.
- W2913149819 cites W2145094598 @default.
- W2913149819 cites W2145287260 @default.
- W2913149819 cites W2163605009 @default.
- W2913149819 cites W2163808566 @default.
- W2913149819 cites W2165731615 @default.
- W2913149819 cites W2188956040 @default.
- W2913149819 cites W2194775991 @default.
- W2913149819 cites W2281477230 @default.
- W2913149819 cites W2304348237 @default.
- W2913149819 cites W2464026376 @default.
- W2913149819 cites W2519131448 @default.
- W2913149819 cites W2555510177 @default.
- W2913149819 cites W2584229793 @default.
- W2913149819 cites W2604672468 @default.
- W2913149819 cites W2605701576 @default.
- W2913149819 cites W2726626628 @default.
- W2913149819 cites W2727093475 @default.
- W2913149819 cites W2737047298 @default.
- W2913149819 cites W2753407461 @default.
- W2913149819 cites W2784025535 @default.
- W2913149819 cites W2785908847 @default.
- W2913149819 cites W2952039572 @default.
- W2913149819 cites W2952957384 @default.
- W2913149819 cites W2963100452 @default.
- W2913149819 cites W2963709863 @default.
- W2913149819 cites W2963812294 @default.
- W2913149819 cites W2964337551 @default.
- W2913149819 cites W3099206234 @default.
- W2913149819 cites W3102431071 @default.
- W2913149819 cites W2010267114 @default.
- W2913149819 doi "https://doi.org/10.1109/inapr.2018.8627054" @default.
- W2913149819 hasPublicationYear "2018" @default.
- W2913149819 type Work @default.
- W2913149819 sameAs 2913149819 @default.
- W2913149819 citedByCount "0" @default.
- W2913149819 crossrefType "proceedings-article" @default.
- W2913149819 hasAuthorship W2913149819A5000614683 @default.
- W2913149819 hasAuthorship W2913149819A5014207051 @default.
- W2913149819 hasAuthorship W2913149819A5034535767 @default.
- W2913149819 hasAuthorship W2913149819A5036949688 @default.
- W2913149819 hasAuthorship W2913149819A5089896404 @default.
- W2913149819 hasConcept C108583219 @default.
- W2913149819 hasConcept C121332964 @default.
- W2913149819 hasConcept C144024400 @default.
- W2913149819 hasConcept C153180895 @default.
- W2913149819 hasConcept C154945302 @default.
- W2913149819 hasConcept C184297639 @default.
- W2913149819 hasConcept C2778334786 @default.
- W2913149819 hasConcept C2779304628 @default.
- W2913149819 hasConcept C2780297707 @default.
- W2913149819 hasConcept C31510193 @default.
- W2913149819 hasConcept C31972630 @default.
- W2913149819 hasConcept C36289849 @default.
- W2913149819 hasConcept C41008148 @default.
- W2913149819 hasConcept C44870925 @default.
- W2913149819 hasConcept C45347329 @default.
- W2913149819 hasConcept C4641261 @default.
- W2913149819 hasConcept C50644808 @default.
- W2913149819 hasConcept C52622490 @default.
- W2913149819 hasConcept C81363708 @default.
- W2913149819 hasConcept C88799230 @default.
- W2913149819 hasConceptScore W2913149819C108583219 @default.