Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913175090> ?p ?o ?g. }
- W2913175090 endingPage "68" @default.
- W2913175090 startingPage "52" @default.
- W2913175090 abstract "This study aims to examine whether decomposed search engine data can be used to improve the forecasting accuracy of tourism demand. The methodology was applied to predict monthly tourist arrivals from nine countries to Hong Kong. Search engine data from Google Trends were first decomposed into different components using an ensemble empirical mode decomposition method and then the cyclical components were examined through statistical analysis. Forecasting models with rolling window estimation were implemented to predict the tourist arrivals to Hong Kong. Results indicate the proposed methodology can outperform the benchmark model in the out-of-sample forecasting evaluation of Choi and Varian (2012). The findings also demonstrate that our proposed methodology is superior in forecasting turning points. This study proposes a unique decomposition-based perspective on tourism forecasting using online search engine data." @default.
- W2913175090 created "2019-02-21" @default.
- W2913175090 creator A5005460332 @default.
- W2913175090 creator A5089443660 @default.
- W2913175090 date "2019-01-28" @default.
- W2913175090 modified "2023-10-16" @default.
- W2913175090 title "Forecasting Tourism Demand with Decomposed Search Cycles" @default.
- W2913175090 cites W1546865555 @default.
- W2913175090 cites W1966911225 @default.
- W2913175090 cites W1983147111 @default.
- W2913175090 cites W1986478348 @default.
- W2913175090 cites W1988845048 @default.
- W2913175090 cites W1991317100 @default.
- W2913175090 cites W2006746888 @default.
- W2913175090 cites W2007221293 @default.
- W2913175090 cites W2025210352 @default.
- W2913175090 cites W2026619093 @default.
- W2913175090 cites W2028702910 @default.
- W2913175090 cites W2030339726 @default.
- W2913175090 cites W2032957102 @default.
- W2913175090 cites W2038642139 @default.
- W2913175090 cites W2078051861 @default.
- W2913175090 cites W2081751588 @default.
- W2913175090 cites W2083455980 @default.
- W2913175090 cites W2086074129 @default.
- W2913175090 cites W2098584872 @default.
- W2913175090 cites W2117239687 @default.
- W2913175090 cites W2120390927 @default.
- W2913175090 cites W2128130077 @default.
- W2913175090 cites W2130778342 @default.
- W2913175090 cites W2141975087 @default.
- W2913175090 cites W2147634746 @default.
- W2913175090 cites W2148852684 @default.
- W2913175090 cites W2154291363 @default.
- W2913175090 cites W2162190428 @default.
- W2913175090 cites W2166505250 @default.
- W2913175090 cites W2166813622 @default.
- W2913175090 cites W2269853658 @default.
- W2913175090 cites W2323881768 @default.
- W2913175090 cites W2328026057 @default.
- W2913175090 cites W2346188678 @default.
- W2913175090 cites W2400339080 @default.
- W2913175090 cites W2500086770 @default.
- W2913175090 cites W2526724998 @default.
- W2913175090 cites W2531629980 @default.
- W2913175090 cites W2547820680 @default.
- W2913175090 cites W2613785310 @default.
- W2913175090 cites W2623776817 @default.
- W2913175090 cites W2765437414 @default.
- W2913175090 cites W2774914982 @default.
- W2913175090 cites W2789902053 @default.
- W2913175090 cites W2804818451 @default.
- W2913175090 cites W3021839112 @default.
- W2913175090 cites W3022023470 @default.
- W2913175090 cites W3122136669 @default.
- W2913175090 cites W3122297847 @default.
- W2913175090 cites W4241115065 @default.
- W2913175090 cites W4300352395 @default.
- W2913175090 doi "https://doi.org/10.1177/0047287518824158" @default.
- W2913175090 hasPublicationYear "2019" @default.
- W2913175090 type Work @default.
- W2913175090 sameAs 2913175090 @default.
- W2913175090 citedByCount "57" @default.
- W2913175090 countsByYear W29131750902019 @default.
- W2913175090 countsByYear W29131750902020 @default.
- W2913175090 countsByYear W29131750902021 @default.
- W2913175090 countsByYear W29131750902022 @default.
- W2913175090 countsByYear W29131750902023 @default.
- W2913175090 crossrefType "journal-article" @default.
- W2913175090 hasAuthorship W2913175090A5005460332 @default.
- W2913175090 hasAuthorship W2913175090A5089443660 @default.
- W2913175090 hasConcept C106131492 @default.
- W2913175090 hasConcept C111919701 @default.
- W2913175090 hasConcept C124101348 @default.
- W2913175090 hasConcept C124681953 @default.
- W2913175090 hasConcept C12713177 @default.
- W2913175090 hasConcept C127413603 @default.
- W2913175090 hasConcept C13280743 @default.
- W2913175090 hasConcept C149782125 @default.
- W2913175090 hasConcept C154945302 @default.
- W2913175090 hasConcept C162324750 @default.
- W2913175090 hasConcept C166957645 @default.
- W2913175090 hasConcept C185592680 @default.
- W2913175090 hasConcept C185798385 @default.
- W2913175090 hasConcept C18903297 @default.
- W2913175090 hasConcept C18918823 @default.
- W2913175090 hasConcept C193809577 @default.
- W2913175090 hasConcept C198531522 @default.
- W2913175090 hasConcept C205649164 @default.
- W2913175090 hasConcept C25570617 @default.
- W2913175090 hasConcept C31972630 @default.
- W2913175090 hasConcept C41008148 @default.
- W2913175090 hasConcept C42475967 @default.
- W2913175090 hasConcept C43617362 @default.
- W2913175090 hasConcept C48677424 @default.
- W2913175090 hasConcept C86803240 @default.
- W2913175090 hasConceptScore W2913175090C106131492 @default.
- W2913175090 hasConceptScore W2913175090C111919701 @default.