Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913191650> ?p ?o ?g. }
- W2913191650 endingPage "1102" @default.
- W2913191650 startingPage "1092" @default.
- W2913191650 abstract "Understanding and predicting a species’ distribution across a landscape is of central importance in ecology, biogeography and conservation biology. However, it presents daunting challenges when populations are highly dynamic (i.e. increasing or decreasing their ranges), particularly for small populations where information about ecology and life history traits is lacking. Currently, many modelling approaches fail to distinguish whether a site is unoccupied because the available habitat is unsuitable or because a species expanding its range has not arrived at the site yet. As a result, habitat that is indeed suitable may appear unsuitable. To overcome some of these limitations, we use a statistical modelling approach based on spatio‐temporal log‐Gaussian Cox processes. These model the spatial distribution of the species across available habitat and how this distribution changes over time, relative to covariates. In addition, the model explicitly accounts for spatio‐temporal dynamics that are unaccounted for by covariates through a spatio‐temporal stochastic process. We illustrate the approach by predicting the distribution of a recently established population of Eurasian cranes Grus grus in England, UK, and estimate the effect of a reintroduction in the range expansion of the population. Our models show that wetland extent and perimeter‐to‐area ratio have a positive and negative effect, respectively, in crane colonisation probability. Moreover, we find that cranes are more likely to colonise areas near already occupied wetlands and that the colonisation process is progressing at a low rate. Finally, the reintroduction of cranes in SW England can be considered a human‐assisted long‐distance dispersal event that has increased the dispersal potential of the species along a longitudinal axis in S England. Spatio‐temporal log‐Gaussian Cox process models offer an excellent opportunity for the study of species where information on life history traits is lacking, since these are represented through the spatio‐temporal dynamics reflected in the model." @default.
- W2913191650 created "2019-02-21" @default.
- W2913191650 creator A5003735430 @default.
- W2913191650 creator A5007753007 @default.
- W2913191650 creator A5042886485 @default.
- W2913191650 creator A5052126292 @default.
- W2913191650 creator A5064362164 @default.
- W2913191650 creator A5067344980 @default.
- W2913191650 creator A5073469682 @default.
- W2913191650 creator A5089486361 @default.
- W2913191650 date "2019-03-04" @default.
- W2913191650 modified "2023-10-14" @default.
- W2913191650 title "Understanding species distribution in dynamic populations: a new approach using spatio‐temporal point process models" @default.
- W2913191650 cites W1200227483 @default.
- W2913191650 cites W1684281329 @default.
- W2913191650 cites W1837874438 @default.
- W2913191650 cites W1959559485 @default.
- W2913191650 cites W1960914988 @default.
- W2913191650 cites W1961948539 @default.
- W2913191650 cites W1967573034 @default.
- W2913191650 cites W1979348491 @default.
- W2913191650 cites W1979680609 @default.
- W2913191650 cites W1981890344 @default.
- W2913191650 cites W1983815392 @default.
- W2913191650 cites W1985813954 @default.
- W2913191650 cites W1995834672 @default.
- W2913191650 cites W2009552537 @default.
- W2913191650 cites W2028854964 @default.
- W2913191650 cites W2029464063 @default.
- W2913191650 cites W2029694543 @default.
- W2913191650 cites W2030266182 @default.
- W2913191650 cites W2068504926 @default.
- W2913191650 cites W2076162621 @default.
- W2913191650 cites W2078908908 @default.
- W2913191650 cites W2084800049 @default.
- W2913191650 cites W2097601813 @default.
- W2913191650 cites W2097864896 @default.
- W2913191650 cites W2098689521 @default.
- W2913191650 cites W2100675615 @default.
- W2913191650 cites W2104734141 @default.
- W2913191650 cites W2105094524 @default.
- W2913191650 cites W2106773969 @default.
- W2913191650 cites W2120555423 @default.
- W2913191650 cites W2123337039 @default.
- W2913191650 cites W2125029846 @default.
- W2913191650 cites W2127597920 @default.
- W2913191650 cites W2144898279 @default.
- W2913191650 cites W2157551512 @default.
- W2913191650 cites W2159190483 @default.
- W2913191650 cites W2175986260 @default.
- W2913191650 cites W2177250564 @default.
- W2913191650 cites W2215102855 @default.
- W2913191650 cites W2460654320 @default.
- W2913191650 cites W2462176841 @default.
- W2913191650 cites W2465699035 @default.
- W2913191650 cites W2519609329 @default.
- W2913191650 cites W3103194080 @default.
- W2913191650 cites W4213120950 @default.
- W2913191650 doi "https://doi.org/10.1111/ecog.03771" @default.
- W2913191650 hasPublicationYear "2019" @default.
- W2913191650 type Work @default.
- W2913191650 sameAs 2913191650 @default.
- W2913191650 citedByCount "21" @default.
- W2913191650 countsByYear W29131916502019 @default.
- W2913191650 countsByYear W29131916502020 @default.
- W2913191650 countsByYear W29131916502021 @default.
- W2913191650 countsByYear W29131916502022 @default.
- W2913191650 countsByYear W29131916502023 @default.
- W2913191650 crossrefType "journal-article" @default.
- W2913191650 hasAuthorship W2913191650A5003735430 @default.
- W2913191650 hasAuthorship W2913191650A5007753007 @default.
- W2913191650 hasAuthorship W2913191650A5042886485 @default.
- W2913191650 hasAuthorship W2913191650A5052126292 @default.
- W2913191650 hasAuthorship W2913191650A5064362164 @default.
- W2913191650 hasAuthorship W2913191650A5067344980 @default.
- W2913191650 hasAuthorship W2913191650A5073469682 @default.
- W2913191650 hasAuthorship W2913191650A5089486361 @default.
- W2913191650 hasBestOaLocation W29131916501 @default.
- W2913191650 hasConcept C105878827 @default.
- W2913191650 hasConcept C132124917 @default.
- W2913191650 hasConcept C144024400 @default.
- W2913191650 hasConcept C149923435 @default.
- W2913191650 hasConcept C159985019 @default.
- W2913191650 hasConcept C185933670 @default.
- W2913191650 hasConcept C18903297 @default.
- W2913191650 hasConcept C189569837 @default.
- W2913191650 hasConcept C192562407 @default.
- W2913191650 hasConcept C204323151 @default.
- W2913191650 hasConcept C205649164 @default.
- W2913191650 hasConcept C2776927270 @default.
- W2913191650 hasConcept C2908647359 @default.
- W2913191650 hasConcept C47559259 @default.
- W2913191650 hasConcept C86803240 @default.
- W2913191650 hasConceptScore W2913191650C105878827 @default.
- W2913191650 hasConceptScore W2913191650C132124917 @default.
- W2913191650 hasConceptScore W2913191650C144024400 @default.
- W2913191650 hasConceptScore W2913191650C149923435 @default.
- W2913191650 hasConceptScore W2913191650C159985019 @default.