Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913207978> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2913207978 abstract "We have witnessed an exponential growth in commercial data services, which has lead to the 'big data era'. Machine learning, as one of the most promising artificial intelligence tools of analyzing the deluge of data, has been invoked in many research areas both in academia and industry. The aim of this article is twin-fold. Firstly, we briefly review big data analysis and machine learning, along with their potential applications in next-generation wireless networks. The second goal is to invoke big data analysis to predict the requirements of mobile users and to exploit it for improving the performance of social network-aware wireless. More particularly, a unified big data aided machine learning framework is proposed, which consists of feature extraction, data modeling and prediction/online refinement. The main benefits of the proposed framework are that by relying on big data which reflects both the spectral and other challenging requirements of the users, we can refine the motivation, problem formulations and methodology of powerful machine learning algorithms in the context of wireless networks. In order to characterize the efficiency of the proposed framework, a pair of intelligent practical applications are provided as case studies: 1) To predict the positioning of drone-mounted areal base stations (BSs) according to the specific tele-traffic requirements by gleaning valuable data from social networks. 2) To predict the content caching requirements of BSs according to the users' preferences by mining data from social networks. Finally, open research opportunities are identified for motivating future investigations." @default.
- W2913207978 created "2019-02-21" @default.
- W2913207978 creator A5005060833 @default.
- W2913207978 creator A5021492036 @default.
- W2913207978 creator A5076863392 @default.
- W2913207978 creator A5091122305 @default.
- W2913207978 date "2019-01-24" @default.
- W2913207978 modified "2023-09-27" @default.
- W2913207978 title "When Machine Learning Meets Big Data: A Wireless Communication Perspective" @default.
- W2913207978 cites W1481566577 @default.
- W2913207978 cites W1503398984 @default.
- W2913207978 cites W1663973292 @default.
- W2913207978 cites W1906224694 @default.
- W2913207978 cites W2104357911 @default.
- W2913207978 cites W2138162238 @default.
- W2913207978 cites W2562947506 @default.
- W2913207978 cites W2579915115 @default.
- W2913207978 cites W2764155154 @default.
- W2913207978 cites W2769456309 @default.
- W2913207978 cites W2791279818 @default.
- W2913207978 cites W2883649322 @default.
- W2913207978 cites W2885300511 @default.
- W2913207978 cites W2886374543 @default.
- W2913207978 cites W2915218333 @default.
- W2913207978 cites W2952736579 @default.
- W2913207978 doi "https://doi.org/10.48550/arxiv.1901.08329" @default.
- W2913207978 hasPublicationYear "2019" @default.
- W2913207978 type Work @default.
- W2913207978 sameAs 2913207978 @default.
- W2913207978 citedByCount "3" @default.
- W2913207978 countsByYear W29132079782019 @default.
- W2913207978 countsByYear W29132079782020 @default.
- W2913207978 crossrefType "posted-content" @default.
- W2913207978 hasAuthorship W2913207978A5005060833 @default.
- W2913207978 hasAuthorship W2913207978A5021492036 @default.
- W2913207978 hasAuthorship W2913207978A5076863392 @default.
- W2913207978 hasAuthorship W2913207978A5091122305 @default.
- W2913207978 hasBestOaLocation W29132079781 @default.
- W2913207978 hasConcept C108037233 @default.
- W2913207978 hasConcept C119857082 @default.
- W2913207978 hasConcept C124101348 @default.
- W2913207978 hasConcept C151730666 @default.
- W2913207978 hasConcept C154945302 @default.
- W2913207978 hasConcept C165696696 @default.
- W2913207978 hasConcept C2522767166 @default.
- W2913207978 hasConcept C2779343474 @default.
- W2913207978 hasConcept C38652104 @default.
- W2913207978 hasConcept C41008148 @default.
- W2913207978 hasConcept C555944384 @default.
- W2913207978 hasConcept C75684735 @default.
- W2913207978 hasConcept C76155785 @default.
- W2913207978 hasConcept C86803240 @default.
- W2913207978 hasConceptScore W2913207978C108037233 @default.
- W2913207978 hasConceptScore W2913207978C119857082 @default.
- W2913207978 hasConceptScore W2913207978C124101348 @default.
- W2913207978 hasConceptScore W2913207978C151730666 @default.
- W2913207978 hasConceptScore W2913207978C154945302 @default.
- W2913207978 hasConceptScore W2913207978C165696696 @default.
- W2913207978 hasConceptScore W2913207978C2522767166 @default.
- W2913207978 hasConceptScore W2913207978C2779343474 @default.
- W2913207978 hasConceptScore W2913207978C38652104 @default.
- W2913207978 hasConceptScore W2913207978C41008148 @default.
- W2913207978 hasConceptScore W2913207978C555944384 @default.
- W2913207978 hasConceptScore W2913207978C75684735 @default.
- W2913207978 hasConceptScore W2913207978C76155785 @default.
- W2913207978 hasConceptScore W2913207978C86803240 @default.
- W2913207978 hasLocation W29132079781 @default.
- W2913207978 hasLocation W29132079782 @default.
- W2913207978 hasOpenAccess W2913207978 @default.
- W2913207978 hasPrimaryLocation W29132079781 @default.
- W2913207978 hasRelatedWork W2215422242 @default.
- W2913207978 hasRelatedWork W2509723377 @default.
- W2913207978 hasRelatedWork W2557659274 @default.
- W2913207978 hasRelatedWork W2599116359 @default.
- W2913207978 hasRelatedWork W2758300172 @default.
- W2913207978 hasRelatedWork W2786333380 @default.
- W2913207978 hasRelatedWork W2968028366 @default.
- W2913207978 hasRelatedWork W3014300295 @default.
- W2913207978 hasRelatedWork W4300424685 @default.
- W2913207978 hasRelatedWork W2621397709 @default.
- W2913207978 isParatext "false" @default.
- W2913207978 isRetracted "false" @default.
- W2913207978 magId "2913207978" @default.
- W2913207978 workType "article" @default.