Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913208712> ?p ?o ?g. }
- W2913208712 abstract "This thesis presents a number of investigations leading to introduction of novel applications of intelligent algorithms in the fields of informatics and analytics. This research aims to develop novel methodologies to reduce dimensions and clustering of highly non-linear multidimensional data. Improving the performance of existing methodologies has been based on two fundamental approaches. The first is to look into making novel structural re-arrangements by hybridisation of conventional intelligent algorithms which are Auto-Associative Neural Networks (AANN) and Self Organizing Maps (SOM) for data clustering improvement. The second is to enhance data clustering and classification performance by introducing novel fundamental algorithmic changes known as M3-SOM in the data processing and training procedure of conventional SOM. Both approaches are tested, benchmarked and analysed using three datasets which are Iris Flowers, Italian Olive Oils and Wine through case studies for dimension reduction, clustering and classification of complex and non-linear data. The study on AANN alone shows that this non-linear algorithm is able to efficiently reduce dimensions of the three datasets. This paves the way towards structurally hybridising AANN as dimension reduction method with SOM as clustering method (AANNSOM) for data clustering enhancement. This hybrid AANNSOM is then introduced and applied to cluster Iris Flowers, Italian Olive Oils and Wine datasets. The hybrid methodology proves to be able to improve data clustering accuracy, reduce quantisation errors and decrease computational time when compared to SOM in all case studies. However, the topographic errors showed inconsistency throughout the studies and it is still difficult for both AANNSOM and SOM to provide additional inherent information of the datasets such as the exact position of a data in a cluster. Therefore, M3-SOM, a novel methodology based on SOM training algorithm is proposed, developed and studied on the same datasets. M3-SOM was able to improve data clustering and classification accuracy for all three case studies when compared to conventional SOM. It is also able to obtain inherent information about the position of one data or towards other data or sub-cluster within the same class in Iris Flowers and Wine datasets. Nevertheless, it faces difficulties in achieving the same level of performance when clustering Italian Olive Oils data due to high number of data classes. However, it can be concluded that both methodologies have been able to improve data clustering and classification performance as well as to discover inherent information inside multidimensional data." @default.
- W2913208712 created "2019-02-21" @default.
- W2913208712 creator A5091433080 @default.
- W2913208712 date "2016-03-01" @default.
- W2913208712 modified "2023-09-27" @default.
- W2913208712 title "Enhanced data clustering and classification using auto-associative neural networks and self organizing maps" @default.
- W2913208712 cites W133892329 @default.
- W2913208712 cites W1501500081 @default.
- W2913208712 cites W1512096212 @default.
- W2913208712 cites W1566114229 @default.
- W2913208712 cites W1882445960 @default.
- W2913208712 cites W1946550961 @default.
- W2913208712 cites W1976208596 @default.
- W2913208712 cites W1990517717 @default.
- W2913208712 cites W1992419399 @default.
- W2913208712 cites W2007643570 @default.
- W2913208712 cites W2011832962 @default.
- W2913208712 cites W2022892561 @default.
- W2913208712 cites W2023637201 @default.
- W2913208712 cites W2035238564 @default.
- W2913208712 cites W2059986167 @default.
- W2913208712 cites W2088698696 @default.
- W2913208712 cites W2096484739 @default.
- W2913208712 cites W2097308346 @default.
- W2913208712 cites W2098183106 @default.
- W2913208712 cites W2098216772 @default.
- W2913208712 cites W2098475409 @default.
- W2913208712 cites W2098648711 @default.
- W2913208712 cites W2105860794 @default.
- W2913208712 cites W2109851087 @default.
- W2913208712 cites W2110464146 @default.
- W2913208712 cites W2110802877 @default.
- W2913208712 cites W2112668677 @default.
- W2913208712 cites W2117033746 @default.
- W2913208712 cites W2119364592 @default.
- W2913208712 cites W2120413242 @default.
- W2913208712 cites W2124776405 @default.
- W2913208712 cites W2124965119 @default.
- W2913208712 cites W2127218421 @default.
- W2913208712 cites W2128031431 @default.
- W2913208712 cites W2128330514 @default.
- W2913208712 cites W2134715704 @default.
- W2913208712 cites W2137570937 @default.
- W2913208712 cites W2141012957 @default.
- W2913208712 cites W2144544802 @default.
- W2913208712 cites W2150926065 @default.
- W2913208712 cites W2152012752 @default.
- W2913208712 cites W2152696473 @default.
- W2913208712 cites W2156771765 @default.
- W2913208712 cites W2158363765 @default.
- W2913208712 cites W2165182095 @default.
- W2913208712 cites W2165298438 @default.
- W2913208712 cites W2168811230 @default.
- W2913208712 cites W2169415399 @default.
- W2913208712 cites W2170746618 @default.
- W2913208712 cites W2199718058 @default.
- W2913208712 cites W2331222631 @default.
- W2913208712 cites W2574358302 @default.
- W2913208712 cites W2611831635 @default.
- W2913208712 cites W3020857852 @default.
- W2913208712 cites W3120740533 @default.
- W2913208712 cites W2199702539 @default.
- W2913208712 cites W3166095749 @default.
- W2913208712 hasPublicationYear "2016" @default.
- W2913208712 type Work @default.
- W2913208712 sameAs 2913208712 @default.
- W2913208712 citedByCount "0" @default.
- W2913208712 crossrefType "dissertation" @default.
- W2913208712 hasAuthorship W2913208712A5091433080 @default.
- W2913208712 hasConcept C111168008 @default.
- W2913208712 hasConcept C111335779 @default.
- W2913208712 hasConcept C124101348 @default.
- W2913208712 hasConcept C153180895 @default.
- W2913208712 hasConcept C154945302 @default.
- W2913208712 hasConcept C202444582 @default.
- W2913208712 hasConcept C2524010 @default.
- W2913208712 hasConcept C33676613 @default.
- W2913208712 hasConcept C33923547 @default.
- W2913208712 hasConcept C41008148 @default.
- W2913208712 hasConcept C50644808 @default.
- W2913208712 hasConcept C70518039 @default.
- W2913208712 hasConcept C73555534 @default.
- W2913208712 hasConcept C94641424 @default.
- W2913208712 hasConceptScore W2913208712C111168008 @default.
- W2913208712 hasConceptScore W2913208712C111335779 @default.
- W2913208712 hasConceptScore W2913208712C124101348 @default.
- W2913208712 hasConceptScore W2913208712C153180895 @default.
- W2913208712 hasConceptScore W2913208712C154945302 @default.
- W2913208712 hasConceptScore W2913208712C202444582 @default.
- W2913208712 hasConceptScore W2913208712C2524010 @default.
- W2913208712 hasConceptScore W2913208712C33676613 @default.
- W2913208712 hasConceptScore W2913208712C33923547 @default.
- W2913208712 hasConceptScore W2913208712C41008148 @default.
- W2913208712 hasConceptScore W2913208712C50644808 @default.
- W2913208712 hasConceptScore W2913208712C70518039 @default.
- W2913208712 hasConceptScore W2913208712C73555534 @default.
- W2913208712 hasConceptScore W2913208712C94641424 @default.
- W2913208712 hasLocation W29132087121 @default.
- W2913208712 hasOpenAccess W2913208712 @default.
- W2913208712 hasPrimaryLocation W29132087121 @default.