Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913227116> ?p ?o ?g. }
- W2913227116 endingPage "240" @default.
- W2913227116 startingPage "226" @default.
- W2913227116 abstract "Abstract Weeds are among the major factors that could harm crop yield. With the advances in electronic and information technologies, machine vision combined with image processing techniques has become a promising tool for precise real-time weed and crop detection in the field, providing valuable sensing information for site-specific weed management. This review summarized the advances of weed detection using ground-based machine vision and image processing techniques. Concretely, the four procedures, i.e., pre-processing, segmentation, feature extraction and classification, for weed detection were presented in detail. To separate vegetation from background, different color indices and classification approaches like color index-based, threshold-based and learning-based ones, were developed. The difficulty of weed detection lies in discriminating between crops and weeds that often have similar properties. Generally, four categories of features, i.e., biological morphology, spectral features, visual textures and spatial contexts, were used for the task, which were discussed in this review. Application of conventional machine learning-based and recently developed deep learning-based approaches for weed detection were also presented. Finally, challenges and solutions provided by researchers for weed detection in the field, including occlusion and overlap of leaves, varying lighting conditions and different growth stages, were discussed." @default.
- W2913227116 created "2019-02-21" @default.
- W2913227116 creator A5001039256 @default.
- W2913227116 creator A5017587977 @default.
- W2913227116 creator A5067078001 @default.
- W2913227116 date "2019-03-01" @default.
- W2913227116 modified "2023-10-06" @default.
- W2913227116 title "A review on weed detection using ground-based machine vision and image processing techniques" @default.
- W2913227116 cites W1594573182 @default.
- W2913227116 cites W1663973292 @default.
- W2913227116 cites W1918006664 @default.
- W2913227116 cites W1965387053 @default.
- W2913227116 cites W1965935430 @default.
- W2913227116 cites W1967020169 @default.
- W2913227116 cites W1971765701 @default.
- W2913227116 cites W1973700570 @default.
- W2913227116 cites W1973788747 @default.
- W2913227116 cites W1976977979 @default.
- W2913227116 cites W1977093830 @default.
- W2913227116 cites W1980148204 @default.
- W2913227116 cites W1987216676 @default.
- W2913227116 cites W1989863789 @default.
- W2913227116 cites W1994028881 @default.
- W2913227116 cites W1997340236 @default.
- W2913227116 cites W1998871699 @default.
- W2913227116 cites W2000143088 @default.
- W2913227116 cites W2002460768 @default.
- W2913227116 cites W2002696192 @default.
- W2913227116 cites W2006668996 @default.
- W2913227116 cites W2010036662 @default.
- W2913227116 cites W2012093028 @default.
- W2913227116 cites W2014643551 @default.
- W2913227116 cites W2018724743 @default.
- W2913227116 cites W2021512179 @default.
- W2913227116 cites W2022163301 @default.
- W2913227116 cites W2023884096 @default.
- W2913227116 cites W2026021064 @default.
- W2913227116 cites W2026664397 @default.
- W2913227116 cites W2027534494 @default.
- W2913227116 cites W2027905638 @default.
- W2913227116 cites W2028187914 @default.
- W2913227116 cites W2030873237 @default.
- W2913227116 cites W2034794296 @default.
- W2913227116 cites W2035104373 @default.
- W2913227116 cites W2036578773 @default.
- W2913227116 cites W2039952872 @default.
- W2913227116 cites W2044465660 @default.
- W2913227116 cites W2044651338 @default.
- W2913227116 cites W2047726130 @default.
- W2913227116 cites W2053522515 @default.
- W2913227116 cites W2057505374 @default.
- W2913227116 cites W2061338905 @default.
- W2913227116 cites W2062498813 @default.
- W2913227116 cites W2063155154 @default.
- W2913227116 cites W2063339119 @default.
- W2913227116 cites W2074272108 @default.
- W2913227116 cites W2074336377 @default.
- W2913227116 cites W2080178568 @default.
- W2913227116 cites W2083970667 @default.
- W2913227116 cites W2084546104 @default.
- W2913227116 cites W2088487511 @default.
- W2913227116 cites W2089040011 @default.
- W2913227116 cites W2089175121 @default.
- W2913227116 cites W2091745481 @default.
- W2913227116 cites W2093020519 @default.
- W2913227116 cites W2094651390 @default.
- W2913227116 cites W2094976293 @default.
- W2913227116 cites W2096448242 @default.
- W2913227116 cites W2117251230 @default.
- W2913227116 cites W2118276298 @default.
- W2913227116 cites W2123101917 @default.
- W2913227116 cites W2127943252 @default.
- W2913227116 cites W2128866545 @default.
- W2913227116 cites W2130649787 @default.
- W2913227116 cites W2133059825 @default.
- W2913227116 cites W2136704614 @default.
- W2913227116 cites W2148877877 @default.
- W2913227116 cites W2150667263 @default.
- W2913227116 cites W2153127838 @default.
- W2913227116 cites W2153364825 @default.
- W2913227116 cites W2157457846 @default.
- W2913227116 cites W2159498975 @default.
- W2913227116 cites W2161774355 @default.
- W2913227116 cites W2163450852 @default.
- W2913227116 cites W2163810466 @default.
- W2913227116 cites W2179483882 @default.
- W2913227116 cites W2185489349 @default.
- W2913227116 cites W2254106841 @default.
- W2913227116 cites W2276022989 @default.
- W2913227116 cites W2300198213 @default.
- W2913227116 cites W2305425931 @default.
- W2913227116 cites W2321884300 @default.
- W2913227116 cites W2394911398 @default.
- W2913227116 cites W2413392648 @default.
- W2913227116 cites W2469882022 @default.
- W2913227116 cites W2520364485 @default.
- W2913227116 cites W2524954406 @default.
- W2913227116 cites W2553808059 @default.