Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913231171> ?p ?o ?g. }
- W2913231171 endingPage "371" @default.
- W2913231171 startingPage "354" @default.
- W2913231171 abstract "Abstract In recent years, person re-identification (ReID) has received much attention since it is a fundamental task in intelligent surveillance systems and has widespread application prospects in numerous fields. Given an image of a pedestrian captured from one camera, the task is to identify this pedestrian from the gallery set captured by other multiple cameras. It is a challenging issue since the appearance of a pedestrian may suffer great changes across different cameras. The task has been greatly boosted by deep learning technology. There are mainly six types of deep learning-based methods designed for this issue, i.e. identification deep model, verification deep model, distance metric-based deep model, part-based deep model, video-based deep model and data augmentation-based deep model. In this paper, we first give a comprehensive review of current six types of deep learning methods. Second, we present the detailed descriptions of existing person ReID datasets. Then, some state-of-the-art performances of methods over recent years on several representative ReID datasets are summarized. Finally, we conclude this paper and discuss the future directions of the person ReID." @default.
- W2913231171 created "2019-02-21" @default.
- W2913231171 creator A5007724310 @default.
- W2913231171 creator A5025714098 @default.
- W2913231171 creator A5028467654 @default.
- W2913231171 creator A5060351693 @default.
- W2913231171 creator A5060381913 @default.
- W2913231171 creator A5072186111 @default.
- W2913231171 creator A5075454071 @default.
- W2913231171 creator A5080063067 @default.
- W2913231171 creator A5081080536 @default.
- W2913231171 creator A5087166824 @default.
- W2913231171 date "2019-04-01" @default.
- W2913231171 modified "2023-10-17" @default.
- W2913231171 title "Deep learning-based methods for person re-identification: A comprehensive review" @default.
- W2913231171 cites W1971955426 @default.
- W2913231171 cites W1977737282 @default.
- W2913231171 cites W1978201669 @default.
- W2913231171 cites W1982828652 @default.
- W2913231171 cites W1994453101 @default.
- W2913231171 cites W2001012564 @default.
- W2913231171 cites W2010206770 @default.
- W2913231171 cites W2014850105 @default.
- W2913231171 cites W2030536784 @default.
- W2913231171 cites W2058232500 @default.
- W2913231171 cites W2059085244 @default.
- W2913231171 cites W2065350495 @default.
- W2913231171 cites W2090123586 @default.
- W2913231171 cites W2093390311 @default.
- W2913231171 cites W2093423362 @default.
- W2913231171 cites W2106442491 @default.
- W2913231171 cites W2118656904 @default.
- W2913231171 cites W2125000529 @default.
- W2913231171 cites W2125447566 @default.
- W2913231171 cites W2126262069 @default.
- W2913231171 cites W2150248355 @default.
- W2913231171 cites W2156854584 @default.
- W2913231171 cites W2157598322 @default.
- W2913231171 cites W2161710599 @default.
- W2913231171 cites W2165605966 @default.
- W2913231171 cites W2253111707 @default.
- W2913231171 cites W2336162022 @default.
- W2913231171 cites W2336678190 @default.
- W2913231171 cites W2342514851 @default.
- W2913231171 cites W2414767909 @default.
- W2913231171 cites W2542376992 @default.
- W2913231171 cites W2560610478 @default.
- W2913231171 cites W2587804601 @default.
- W2913231171 cites W2724213014 @default.
- W2913231171 cites W3098711604 @default.
- W2913231171 cites W3103352455 @default.
- W2913231171 cites W3106411919 @default.
- W2913231171 doi "https://doi.org/10.1016/j.neucom.2019.01.079" @default.
- W2913231171 hasPublicationYear "2019" @default.
- W2913231171 type Work @default.
- W2913231171 sameAs 2913231171 @default.
- W2913231171 citedByCount "152" @default.
- W2913231171 countsByYear W29132311712019 @default.
- W2913231171 countsByYear W29132311712020 @default.
- W2913231171 countsByYear W29132311712021 @default.
- W2913231171 countsByYear W29132311712022 @default.
- W2913231171 countsByYear W29132311712023 @default.
- W2913231171 crossrefType "journal-article" @default.
- W2913231171 hasAuthorship W2913231171A5007724310 @default.
- W2913231171 hasAuthorship W2913231171A5025714098 @default.
- W2913231171 hasAuthorship W2913231171A5028467654 @default.
- W2913231171 hasAuthorship W2913231171A5060351693 @default.
- W2913231171 hasAuthorship W2913231171A5060381913 @default.
- W2913231171 hasAuthorship W2913231171A5072186111 @default.
- W2913231171 hasAuthorship W2913231171A5075454071 @default.
- W2913231171 hasAuthorship W2913231171A5080063067 @default.
- W2913231171 hasAuthorship W2913231171A5081080536 @default.
- W2913231171 hasAuthorship W2913231171A5087166824 @default.
- W2913231171 hasConcept C108583219 @default.
- W2913231171 hasConcept C116834253 @default.
- W2913231171 hasConcept C119857082 @default.
- W2913231171 hasConcept C154945302 @default.
- W2913231171 hasConcept C41008148 @default.
- W2913231171 hasConcept C59822182 @default.
- W2913231171 hasConcept C86803240 @default.
- W2913231171 hasConceptScore W2913231171C108583219 @default.
- W2913231171 hasConceptScore W2913231171C116834253 @default.
- W2913231171 hasConceptScore W2913231171C119857082 @default.
- W2913231171 hasConceptScore W2913231171C154945302 @default.
- W2913231171 hasConceptScore W2913231171C41008148 @default.
- W2913231171 hasConceptScore W2913231171C59822182 @default.
- W2913231171 hasConceptScore W2913231171C86803240 @default.
- W2913231171 hasFunder F4320321001 @default.
- W2913231171 hasFunder F4320321543 @default.
- W2913231171 hasLocation W29132311711 @default.
- W2913231171 hasOpenAccess W2913231171 @default.
- W2913231171 hasPrimaryLocation W29132311711 @default.
- W2913231171 hasRelatedWork W3014300295 @default.
- W2913231171 hasRelatedWork W3164822677 @default.
- W2913231171 hasRelatedWork W3215138031 @default.
- W2913231171 hasRelatedWork W4223943233 @default.
- W2913231171 hasRelatedWork W4225161397 @default.
- W2913231171 hasRelatedWork W4250304930 @default.