Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913247645> ?p ?o ?g. }
- W2913247645 abstract "The ability to predict corruption is crucial to policy. Using rich micro-data from Brazil, we show that multiple machine learning models display high levels of performance in predicting municipality-level corruption in public spending. We then quantify which individual municipality features and groups of similar characteristics have the highest predictive power. We find that measures of private sector activity, financial development, and human capital are the strongest predictors of corruption, while public sector and political features play a secondary role. Our findings have implications for the design and cost-effectiveness of various anti-corruption policies." @default.
- W2913247645 created "2019-02-21" @default.
- W2913247645 creator A5004859222 @default.
- W2913247645 creator A5010371155 @default.
- W2913247645 creator A5024330362 @default.
- W2913247645 creator A5037430626 @default.
- W2913247645 date "2019-01-01" @default.
- W2913247645 modified "2023-09-24" @default.
- W2913247645 title "What Predicts Corruption?" @default.
- W2913247645 cites W1523985187 @default.
- W2913247645 cites W1570307703 @default.
- W2913247645 cites W1964939538 @default.
- W2913247645 cites W1987961056 @default.
- W2913247645 cites W1991128340 @default.
- W2913247645 cites W2022615286 @default.
- W2913247645 cites W2024046085 @default.
- W2913247645 cites W2024358613 @default.
- W2913247645 cites W2034304255 @default.
- W2913247645 cites W2035225404 @default.
- W2913247645 cites W2059794602 @default.
- W2913247645 cites W2070706475 @default.
- W2913247645 cites W2095331327 @default.
- W2913247645 cites W2102409046 @default.
- W2913247645 cites W2105171386 @default.
- W2913247645 cites W2120303470 @default.
- W2913247645 cites W2122014785 @default.
- W2913247645 cites W2130799276 @default.
- W2913247645 cites W2134472446 @default.
- W2913247645 cites W2135046866 @default.
- W2913247645 cites W2143584325 @default.
- W2913247645 cites W2148228039 @default.
- W2913247645 cites W2170545497 @default.
- W2913247645 cites W2203167467 @default.
- W2913247645 cites W2341176516 @default.
- W2913247645 cites W2493706103 @default.
- W2913247645 cites W2541771911 @default.
- W2913247645 cites W2585169518 @default.
- W2913247645 cites W2769623714 @default.
- W2913247645 cites W2898827087 @default.
- W2913247645 cites W2901687301 @default.
- W2913247645 cites W2980121692 @default.
- W2913247645 cites W3021683910 @default.
- W2913247645 cites W3023420463 @default.
- W2913247645 cites W3023505870 @default.
- W2913247645 cites W3094521286 @default.
- W2913247645 cites W3121565450 @default.
- W2913247645 cites W3122509642 @default.
- W2913247645 cites W3123257057 @default.
- W2913247645 cites W3123912720 @default.
- W2913247645 cites W3127972615 @default.
- W2913247645 cites W3141406740 @default.
- W2913247645 cites W4210448667 @default.
- W2913247645 cites W4213382287 @default.
- W2913247645 cites W4233056867 @default.
- W2913247645 cites W4233345704 @default.
- W2913247645 cites W4235313912 @default.
- W2913247645 cites W4242989153 @default.
- W2913247645 cites W4244668517 @default.
- W2913247645 cites W4292932141 @default.
- W2913247645 doi "https://doi.org/10.2139/ssrn.3330651" @default.
- W2913247645 hasPublicationYear "2019" @default.
- W2913247645 type Work @default.
- W2913247645 sameAs 2913247645 @default.
- W2913247645 citedByCount "5" @default.
- W2913247645 countsByYear W29132476452017 @default.
- W2913247645 countsByYear W29132476452020 @default.
- W2913247645 countsByYear W29132476452021 @default.
- W2913247645 countsByYear W29132476452022 @default.
- W2913247645 crossrefType "journal-article" @default.
- W2913247645 hasAuthorship W2913247645A5004859222 @default.
- W2913247645 hasAuthorship W2913247645A5010371155 @default.
- W2913247645 hasAuthorship W2913247645A5024330362 @default.
- W2913247645 hasAuthorship W2913247645A5037430626 @default.
- W2913247645 hasBestOaLocation W29132476452 @default.
- W2913247645 hasConcept C138885662 @default.
- W2913247645 hasConcept C17744445 @default.
- W2913247645 hasConcept C2780027415 @default.
- W2913247645 hasConcept C41895202 @default.
- W2913247645 hasConceptScore W2913247645C138885662 @default.
- W2913247645 hasConceptScore W2913247645C17744445 @default.
- W2913247645 hasConceptScore W2913247645C2780027415 @default.
- W2913247645 hasConceptScore W2913247645C41895202 @default.
- W2913247645 hasLocation W29132476451 @default.
- W2913247645 hasLocation W29132476452 @default.
- W2913247645 hasLocation W29132476453 @default.
- W2913247645 hasLocation W29132476454 @default.
- W2913247645 hasOpenAccess W2913247645 @default.
- W2913247645 hasPrimaryLocation W29132476451 @default.
- W2913247645 hasRelatedWork W2005705120 @default.
- W2913247645 hasRelatedWork W2088897247 @default.
- W2913247645 hasRelatedWork W2207617712 @default.
- W2913247645 hasRelatedWork W2331751607 @default.
- W2913247645 hasRelatedWork W2350240814 @default.
- W2913247645 hasRelatedWork W2368670111 @default.
- W2913247645 hasRelatedWork W2748952813 @default.
- W2913247645 hasRelatedWork W2899084033 @default.
- W2913247645 hasRelatedWork W2965407340 @default.
- W2913247645 hasRelatedWork W3004002978 @default.
- W2913247645 isParatext "false" @default.
- W2913247645 isRetracted "false" @default.