Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913258970> ?p ?o ?g. }
- W2913258970 abstract "Population aged 60 and over is growing faster. Ageing-caused changes, such as physical or cognitive decline, could affect people’s quality of life, resulting in injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) has become one of the most promising assistive technologies for older people’s daily life. Literature in HAR suggests that each sensor modality has its strengths and limitations and single sensor modalities may not cope with complex situations in practice. This research aims to design and implement a hybrid sensory HAR system to provide more comprehensive, practical and accurate surveillance for older people to assist them living independently. This reseach: 1) designs and develops a hybrid HAR system which provides a spatio- temporal surveillance system for older people by combining the wrist-worn sensors and the room-mounted ambient sensors (passive infrared); the wearable data are used to recognize the defined specific daily activities, and the ambient information is used to infer the occupant’s room-level daily routine; 2): proposes a unique and effective data fusion method to hybridize the two-source sensory data, in which the captured room-level location information from the ambient sensors is also utilized to trigger the sub classification models pretrained by room-assigned wearable data; 3): implements augmented features which are extracted from the attitude angles of the wearable device and explores the contribution of the new features to HAR; 4:) proposes a feature selection (FS) method in the view of kernel canonical correlation analysis (KCCA) to maximize the relevance between the feature candidate and the target class labels and simultaneously minimizes the joint redundancy between the already selected features and the feature candidate, named mRMJR-KCCA; 5:) demonstrates all the proposed methods above with the ground-truth data collected from recruited participants in home settings. The proposed system has three function modes: 1) the pure wearable sensing mode (the whole classification model) which can identify all the defined specific daily activities together and function alone when the ambient sensing fails; 2) the pure ambient sensing mode which can deliver the occupant’s room-level daily routine without wearable sensing; and 3) the data fusion mode (room-based sub classification mode) which provides a more comprehensive and accurate surveillance HAR when both the wearable sensing and ambient sensing function properly. The research also applies the mutual information (MI)-based FS methods for feature selection, Support Vector Machine (SVM) and Random Forest (RF) for classification. The experimental results demonstrate that the proposed hybrid sensory system improves the recognition accuracy to 98.96% after applying data fusion using Random Forest (RF) classification and mRMJR-KCCA feature selection. Furthermore, the improved results are achieved with a much smaller number of features compared with the scenario of recognizing all the defined activities using wearable data alone. The research work conducted in the thesis is unique, which is not directly compared with others since there are few other similar existing works in terms of the proposed data fusion method and the introduced new feature set." @default.
- W2913258970 created "2019-02-21" @default.
- W2913258970 creator A5003642180 @default.
- W2913258970 date "2019-01-24" @default.
- W2913258970 modified "2023-09-23" @default.
- W2913258970 title "A data fusion-based hybrid sensory system for older people’s daily activity recognition." @default.
- W2913258970 cites W1078622504 @default.
- W2913258970 cites W1178673422 @default.
- W2913258970 cites W123295786 @default.
- W2913258970 cites W151314940 @default.
- W2913258970 cites W1523385540 @default.
- W2913258970 cites W1569735419 @default.
- W2913258970 cites W1580817707 @default.
- W2913258970 cites W1606626619 @default.
- W2913258970 cites W1667211683 @default.
- W2913258970 cites W1796844795 @default.
- W2913258970 cites W187581710 @default.
- W2913258970 cites W1880353323 @default.
- W2913258970 cites W1911839968 @default.
- W2913258970 cites W1913582850 @default.
- W2913258970 cites W1924211602 @default.
- W2913258970 cites W1963630472 @default.
- W2913258970 cites W1963743786 @default.
- W2913258970 cites W1966580198 @default.
- W2913258970 cites W1968160919 @default.
- W2913258970 cites W1968670561 @default.
- W2913258970 cites W1969069964 @default.
- W2913258970 cites W1969307352 @default.
- W2913258970 cites W1970075548 @default.
- W2913258970 cites W1970099751 @default.
- W2913258970 cites W1970508061 @default.
- W2913258970 cites W1971227442 @default.
- W2913258970 cites W1971525994 @default.
- W2913258970 cites W1972469193 @default.
- W2913258970 cites W1975043475 @default.
- W2913258970 cites W1975995839 @default.
- W2913258970 cites W1979148805 @default.
- W2913258970 cites W1980190659 @default.
- W2913258970 cites W1980826331 @default.
- W2913258970 cites W1983905587 @default.
- W2913258970 cites W1985706701 @default.
- W2913258970 cites W1988702183 @default.
- W2913258970 cites W1988835709 @default.
- W2913258970 cites W1988947723 @default.
- W2913258970 cites W1990900597 @default.
- W2913258970 cites W1991539813 @default.
- W2913258970 cites W1992534758 @default.
- W2913258970 cites W1994595981 @default.
- W2913258970 cites W1999712889 @default.
- W2913258970 cites W2001059210 @default.
- W2913258970 cites W2008311091 @default.
- W2913258970 cites W2009143818 @default.
- W2913258970 cites W2009385507 @default.
- W2913258970 cites W2010687197 @default.
- W2913258970 cites W2011248826 @default.
- W2913258970 cites W2013582641 @default.
- W2913258970 cites W2014431515 @default.
- W2913258970 cites W2014606825 @default.
- W2913258970 cites W2016965338 @default.
- W2913258970 cites W2017351764 @default.
- W2913258970 cites W2017526794 @default.
- W2913258970 cites W2017634428 @default.
- W2913258970 cites W2018608640 @default.
- W2913258970 cites W2019342228 @default.
- W2913258970 cites W2020994185 @default.
- W2913258970 cites W2022469758 @default.
- W2913258970 cites W2023302299 @default.
- W2913258970 cites W2023756500 @default.
- W2913258970 cites W2025341678 @default.
- W2913258970 cites W2026297770 @default.
- W2913258970 cites W2028538780 @default.
- W2913258970 cites W2028782774 @default.
- W2913258970 cites W2031461964 @default.
- W2913258970 cites W2031751002 @default.
- W2913258970 cites W2032729268 @default.
- W2913258970 cites W2033772926 @default.
- W2913258970 cites W2034304113 @default.
- W2913258970 cites W2034582927 @default.
- W2913258970 cites W2034899024 @default.
- W2913258970 cites W2035787713 @default.
- W2913258970 cites W2035877237 @default.
- W2913258970 cites W2035941890 @default.
- W2913258970 cites W2046140781 @default.
- W2913258970 cites W2048438099 @default.
- W2913258970 cites W2050477740 @default.
- W2913258970 cites W2051029594 @default.
- W2913258970 cites W2051167698 @default.
- W2913258970 cites W2054780155 @default.
- W2913258970 cites W2055100454 @default.
- W2913258970 cites W2059732136 @default.
- W2913258970 cites W2059983432 @default.
- W2913258970 cites W2061710350 @default.
- W2913258970 cites W2067299273 @default.
- W2913258970 cites W2072863751 @default.
- W2913258970 cites W2073401630 @default.
- W2913258970 cites W2073825700 @default.
- W2913258970 cites W2077213692 @default.
- W2913258970 cites W2078551984 @default.
- W2913258970 cites W2079424416 @default.
- W2913258970 cites W2081135661 @default.