Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913268445> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2913268445 abstract "Many common data analysis and machine learning algorithms for time series, such as classification, clustering, or dimensionality reduction, require a distance measurement between pairs of time series in order to determine their similarity. A variety of measures can be found in the literature, each with their own strengths and weaknesses, but the Dynamic Time Warping (DTW) distance measure has occupied an important place since its early applications for the analysis and recognition of spoken word. The main disadvantage of the DTW algorithm is, however, its quadratic time and space complexity, which limits its practical use to relatively small time series. This issue is even more problematic when dealing with streaming time series that are continuously updated, since the analysis must be re-executed regularly and with strict running time constraints. In this paper, we describe enhancements to the DTW algorithm that allow it to be used efficiently in a streaming scenario by supporting an append operation for new time steps with a linear complexity when an exact, error-free DTW is needed, and even better performance when either a Sakoe-Chiba band is used, or when a sliding window is the desired range for the data. Our experiments with one synthetic and four natural data sets have shown that it outperforms other DTW implementations and the potential errors are, in general, much lower than another state-of-the-art approximated DTW technique." @default.
- W2913268445 created "2019-02-21" @default.
- W2913268445 creator A5006966951 @default.
- W2913268445 creator A5055188702 @default.
- W2913268445 date "2018-12-01" @default.
- W2913268445 modified "2023-09-23" @default.
- W2913268445 title "Efficient Dynamic Time Warping for Big Data Streams" @default.
- W2913268445 cites W1534304300 @default.
- W2913268445 cites W1826290430 @default.
- W2913268445 cites W1853995153 @default.
- W2913268445 cites W1894414046 @default.
- W2913268445 cites W1966554111 @default.
- W2913268445 cites W2017539895 @default.
- W2913268445 cites W2043935429 @default.
- W2913268445 cites W2060192486 @default.
- W2913268445 cites W2098759488 @default.
- W2913268445 cites W2102443632 @default.
- W2913268445 cites W2128160875 @default.
- W2913268445 cites W2137972724 @default.
- W2913268445 cites W2144994235 @default.
- W2913268445 cites W2507191791 @default.
- W2913268445 cites W2555077524 @default.
- W2913268445 cites W2776211041 @default.
- W2913268445 cites W4237421257 @default.
- W2913268445 cites W4240592325 @default.
- W2913268445 cites W69342273 @default.
- W2913268445 doi "https://doi.org/10.1109/bigdata.2018.8621878" @default.
- W2913268445 hasPublicationYear "2018" @default.
- W2913268445 type Work @default.
- W2913268445 sameAs 2913268445 @default.
- W2913268445 citedByCount "5" @default.
- W2913268445 countsByYear W29132684452019 @default.
- W2913268445 countsByYear W29132684452020 @default.
- W2913268445 countsByYear W29132684452022 @default.
- W2913268445 countsByYear W29132684452023 @default.
- W2913268445 crossrefType "proceedings-article" @default.
- W2913268445 hasAuthorship W2913268445A5006966951 @default.
- W2913268445 hasAuthorship W2913268445A5055188702 @default.
- W2913268445 hasConcept C102392041 @default.
- W2913268445 hasConcept C111030470 @default.
- W2913268445 hasConcept C111919701 @default.
- W2913268445 hasConcept C11413529 @default.
- W2913268445 hasConcept C119857082 @default.
- W2913268445 hasConcept C124101348 @default.
- W2913268445 hasConcept C151406439 @default.
- W2913268445 hasConcept C153180895 @default.
- W2913268445 hasConcept C154945302 @default.
- W2913268445 hasConcept C2776517306 @default.
- W2913268445 hasConcept C2778751112 @default.
- W2913268445 hasConcept C2780009758 @default.
- W2913268445 hasConcept C311688 @default.
- W2913268445 hasConcept C41008148 @default.
- W2913268445 hasConcept C70518039 @default.
- W2913268445 hasConcept C73555534 @default.
- W2913268445 hasConcept C88516994 @default.
- W2913268445 hasConcept C89198739 @default.
- W2913268445 hasConceptScore W2913268445C102392041 @default.
- W2913268445 hasConceptScore W2913268445C111030470 @default.
- W2913268445 hasConceptScore W2913268445C111919701 @default.
- W2913268445 hasConceptScore W2913268445C11413529 @default.
- W2913268445 hasConceptScore W2913268445C119857082 @default.
- W2913268445 hasConceptScore W2913268445C124101348 @default.
- W2913268445 hasConceptScore W2913268445C151406439 @default.
- W2913268445 hasConceptScore W2913268445C153180895 @default.
- W2913268445 hasConceptScore W2913268445C154945302 @default.
- W2913268445 hasConceptScore W2913268445C2776517306 @default.
- W2913268445 hasConceptScore W2913268445C2778751112 @default.
- W2913268445 hasConceptScore W2913268445C2780009758 @default.
- W2913268445 hasConceptScore W2913268445C311688 @default.
- W2913268445 hasConceptScore W2913268445C41008148 @default.
- W2913268445 hasConceptScore W2913268445C70518039 @default.
- W2913268445 hasConceptScore W2913268445C73555534 @default.
- W2913268445 hasConceptScore W2913268445C88516994 @default.
- W2913268445 hasConceptScore W2913268445C89198739 @default.
- W2913268445 hasLocation W29132684451 @default.
- W2913268445 hasOpenAccess W2913268445 @default.
- W2913268445 hasPrimaryLocation W29132684451 @default.
- W2913268445 hasRelatedWork W2047084382 @default.
- W2913268445 hasRelatedWork W2053868335 @default.
- W2913268445 hasRelatedWork W2065159238 @default.
- W2913268445 hasRelatedWork W2376797789 @default.
- W2913268445 hasRelatedWork W2513074791 @default.
- W2913268445 hasRelatedWork W2913268445 @default.
- W2913268445 hasRelatedWork W294116850 @default.
- W2913268445 hasRelatedWork W3211035526 @default.
- W2913268445 hasRelatedWork W41218883 @default.
- W2913268445 hasRelatedWork W2182136398 @default.
- W2913268445 isParatext "false" @default.
- W2913268445 isRetracted "false" @default.
- W2913268445 magId "2913268445" @default.
- W2913268445 workType "article" @default.