Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913291201> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2913291201 abstract "Smart grids are becoming increasingly closer to consumers, especially residential consumers, bringing with them a wide range of possibilities. The level of information obtained on a smart grid will be much higher when compared to a traditional network and at this point, more informed consumers tend to consume more efficiently, bringing benefits to themselves and to the system. An interesting fact for control within a residence is forecasting consumption, allowing the consumer to know in advance how much to consume up to a certain period. Artificial neural networks are one of several methods used to forecast time series, however, require a high volume of historical data for the training of the network, given that these may not be accessible or even exist. At this point, the objective of this work is to evaluate the use of load curves obtained through computational tools for the pre-training of artificial neural networks used in the consumption forecast. A tool is used to create random load curves according to the region and socioeconomic characteristics. The load curves are transformed into cumulative consumption curves and used as training vectors of the artificial neural network. The results of the tests were very promising, they showed that the pretraining with the virtual data makes possible the forecast of the time series even in the absence of real data for the training, showing that the methodology developed has great potential of application in works related to the forecast consumption." @default.
- W2913291201 created "2019-02-21" @default.
- W2913291201 creator A5007540071 @default.
- W2913291201 creator A5010102527 @default.
- W2913291201 creator A5020868800 @default.
- W2913291201 creator A5042738811 @default.
- W2913291201 creator A5056316477 @default.
- W2913291201 creator A5042718369 @default.
- W2913291201 date "2018-11-01" @default.
- W2913291201 modified "2023-10-16" @default.
- W2913291201 title "Use of virtual load curves for the training of neural networks for residential electricity consumption forecasting applications" @default.
- W2913291201 cites W176005445 @default.
- W2913291201 cites W1983732624 @default.
- W2913291201 cites W2002412332 @default.
- W2913291201 cites W2029446424 @default.
- W2913291201 cites W2039307621 @default.
- W2913291201 cites W2040308595 @default.
- W2913291201 cites W2078019988 @default.
- W2913291201 cites W2094930147 @default.
- W2913291201 cites W2098960099 @default.
- W2913291201 cites W2107949130 @default.
- W2913291201 cites W2761088449 @default.
- W2913291201 cites W2810317847 @default.
- W2913291201 doi "https://doi.org/10.1109/induscon.2018.8627295" @default.
- W2913291201 hasPublicationYear "2018" @default.
- W2913291201 type Work @default.
- W2913291201 sameAs 2913291201 @default.
- W2913291201 citedByCount "0" @default.
- W2913291201 crossrefType "proceedings-article" @default.
- W2913291201 hasAuthorship W2913291201A5007540071 @default.
- W2913291201 hasAuthorship W2913291201A5010102527 @default.
- W2913291201 hasAuthorship W2913291201A5020868800 @default.
- W2913291201 hasAuthorship W2913291201A5042718369 @default.
- W2913291201 hasAuthorship W2913291201A5042738811 @default.
- W2913291201 hasAuthorship W2913291201A5056316477 @default.
- W2913291201 hasConcept C10558101 @default.
- W2913291201 hasConcept C119599485 @default.
- W2913291201 hasConcept C119857082 @default.
- W2913291201 hasConcept C121332964 @default.
- W2913291201 hasConcept C127413603 @default.
- W2913291201 hasConcept C13736549 @default.
- W2913291201 hasConcept C144024400 @default.
- W2913291201 hasConcept C146978453 @default.
- W2913291201 hasConcept C151406439 @default.
- W2913291201 hasConcept C153294291 @default.
- W2913291201 hasConcept C154945302 @default.
- W2913291201 hasConcept C18762648 @default.
- W2913291201 hasConcept C187691185 @default.
- W2913291201 hasConcept C204323151 @default.
- W2913291201 hasConcept C2524010 @default.
- W2913291201 hasConcept C2777211547 @default.
- W2913291201 hasConcept C28719098 @default.
- W2913291201 hasConcept C30772137 @default.
- W2913291201 hasConcept C33923547 @default.
- W2913291201 hasConcept C36289849 @default.
- W2913291201 hasConcept C41008148 @default.
- W2913291201 hasConcept C42475967 @default.
- W2913291201 hasConcept C50644808 @default.
- W2913291201 hasConcept C78519656 @default.
- W2913291201 hasConceptScore W2913291201C10558101 @default.
- W2913291201 hasConceptScore W2913291201C119599485 @default.
- W2913291201 hasConceptScore W2913291201C119857082 @default.
- W2913291201 hasConceptScore W2913291201C121332964 @default.
- W2913291201 hasConceptScore W2913291201C127413603 @default.
- W2913291201 hasConceptScore W2913291201C13736549 @default.
- W2913291201 hasConceptScore W2913291201C144024400 @default.
- W2913291201 hasConceptScore W2913291201C146978453 @default.
- W2913291201 hasConceptScore W2913291201C151406439 @default.
- W2913291201 hasConceptScore W2913291201C153294291 @default.
- W2913291201 hasConceptScore W2913291201C154945302 @default.
- W2913291201 hasConceptScore W2913291201C18762648 @default.
- W2913291201 hasConceptScore W2913291201C187691185 @default.
- W2913291201 hasConceptScore W2913291201C204323151 @default.
- W2913291201 hasConceptScore W2913291201C2524010 @default.
- W2913291201 hasConceptScore W2913291201C2777211547 @default.
- W2913291201 hasConceptScore W2913291201C28719098 @default.
- W2913291201 hasConceptScore W2913291201C30772137 @default.
- W2913291201 hasConceptScore W2913291201C33923547 @default.
- W2913291201 hasConceptScore W2913291201C36289849 @default.
- W2913291201 hasConceptScore W2913291201C41008148 @default.
- W2913291201 hasConceptScore W2913291201C42475967 @default.
- W2913291201 hasConceptScore W2913291201C50644808 @default.
- W2913291201 hasConceptScore W2913291201C78519656 @default.
- W2913291201 hasLocation W29132912011 @default.
- W2913291201 hasOpenAccess W2913291201 @default.
- W2913291201 hasPrimaryLocation W29132912011 @default.
- W2913291201 hasRelatedWork W2084779923 @default.
- W2913291201 hasRelatedWork W2140225375 @default.
- W2913291201 hasRelatedWork W2319548976 @default.
- W2913291201 hasRelatedWork W2990724155 @default.
- W2913291201 hasRelatedWork W2992775743 @default.
- W2913291201 hasRelatedWork W30971798 @default.
- W2913291201 hasRelatedWork W3206682408 @default.
- W2913291201 hasRelatedWork W3212578714 @default.
- W2913291201 hasRelatedWork W4213225422 @default.
- W2913291201 hasRelatedWork W1629725936 @default.
- W2913291201 isParatext "false" @default.
- W2913291201 isRetracted "false" @default.
- W2913291201 magId "2913291201" @default.
- W2913291201 workType "article" @default.