Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913302279> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2913302279 abstract "Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis." @default.
- W2913302279 created "2019-02-21" @default.
- W2913302279 creator A5082499439 @default.
- W2913302279 date "2018-01-30" @default.
- W2913302279 modified "2023-09-27" @default.
- W2913302279 title "Bio-inspired robotic control in underactuation : principles for energy efficacy, dynamic compliance interactions and adaptability" @default.
- W2913302279 hasPublicationYear "2018" @default.
- W2913302279 type Work @default.
- W2913302279 sameAs 2913302279 @default.
- W2913302279 citedByCount "0" @default.
- W2913302279 crossrefType "dissertation" @default.
- W2913302279 hasAuthorship W2913302279A5082499439 @default.
- W2913302279 hasConcept C121332964 @default.
- W2913302279 hasConcept C127413603 @default.
- W2913302279 hasConcept C1276947 @default.
- W2913302279 hasConcept C133731056 @default.
- W2913302279 hasConcept C13662910 @default.
- W2913302279 hasConcept C154945302 @default.
- W2913302279 hasConcept C208081375 @default.
- W2913302279 hasConcept C2775924081 @default.
- W2913302279 hasConcept C41008148 @default.
- W2913302279 hasConcept C47446073 @default.
- W2913302279 hasConcept C58581272 @default.
- W2913302279 hasConcept C62520636 @default.
- W2913302279 hasConcept C77405623 @default.
- W2913302279 hasConcept C88337583 @default.
- W2913302279 hasConcept C90509273 @default.
- W2913302279 hasConceptScore W2913302279C121332964 @default.
- W2913302279 hasConceptScore W2913302279C127413603 @default.
- W2913302279 hasConceptScore W2913302279C1276947 @default.
- W2913302279 hasConceptScore W2913302279C133731056 @default.
- W2913302279 hasConceptScore W2913302279C13662910 @default.
- W2913302279 hasConceptScore W2913302279C154945302 @default.
- W2913302279 hasConceptScore W2913302279C208081375 @default.
- W2913302279 hasConceptScore W2913302279C2775924081 @default.
- W2913302279 hasConceptScore W2913302279C41008148 @default.
- W2913302279 hasConceptScore W2913302279C47446073 @default.
- W2913302279 hasConceptScore W2913302279C58581272 @default.
- W2913302279 hasConceptScore W2913302279C62520636 @default.
- W2913302279 hasConceptScore W2913302279C77405623 @default.
- W2913302279 hasConceptScore W2913302279C88337583 @default.
- W2913302279 hasConceptScore W2913302279C90509273 @default.
- W2913302279 hasLocation W29133022791 @default.
- W2913302279 hasOpenAccess W2913302279 @default.
- W2913302279 hasPrimaryLocation W29133022791 @default.
- W2913302279 hasRelatedWork W1655426152 @default.
- W2913302279 hasRelatedWork W188419652 @default.
- W2913302279 hasRelatedWork W1906460778 @default.
- W2913302279 hasRelatedWork W1980505543 @default.
- W2913302279 hasRelatedWork W2035126243 @default.
- W2913302279 hasRelatedWork W2042865183 @default.
- W2913302279 hasRelatedWork W2051353145 @default.
- W2913302279 hasRelatedWork W2076554429 @default.
- W2913302279 hasRelatedWork W2120175220 @default.
- W2913302279 hasRelatedWork W2188834755 @default.
- W2913302279 hasRelatedWork W2195183926 @default.
- W2913302279 hasRelatedWork W2513398726 @default.
- W2913302279 hasRelatedWork W291926326 @default.
- W2913302279 hasRelatedWork W3007066551 @default.
- W2913302279 hasRelatedWork W3053344263 @default.
- W2913302279 hasRelatedWork W3106863577 @default.
- W2913302279 hasRelatedWork W3111287985 @default.
- W2913302279 hasRelatedWork W2090576598 @default.
- W2913302279 hasRelatedWork W2154900160 @default.
- W2913302279 hasRelatedWork W314909738 @default.
- W2913302279 isParatext "false" @default.
- W2913302279 isRetracted "false" @default.
- W2913302279 magId "2913302279" @default.
- W2913302279 workType "dissertation" @default.