Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913308861> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2913308861 abstract "Our ability to process large amounts of data and the size and number of data sets are growing at an incredible pace. This development presents us with the opportunity to build systems that perform complex analyses of increasingly dense networks of data. These opportunities include computing recommendations, analysing social networks, finding patterns in transaction networks, scheduling tasks, or inferencing probabilistic models. Many of these tasks involve processing data that has a natural graph representation.Whilst the opportunities are there in the form of access to processing resources and data sets, the way we write software has largely not caught up. Many use MapReduce for scalable processing, but this abstraction has shortcomings with regard to processing graph structured data, especially with iterative and asynchronous processing.This thesis introduces the SIGNAL/COLLECT programming model and framework for efficient parallel and distributed large-scale graph processing. We show that this abstraction captures the essence of many algorithms on graphs in a concise and elegant way. Beyond that, we also show implementations of two complex systems built on SIGNAL/COLLECT: The first system is TripleRush, a distributed in-memory triple store with a novel architecture. The second system is foxPSL, a distributed proba- bilistic inferencing system. Our evaluations show that the SIGNAL/COLLECT framework can efficiently execute simple graph algorithms such as PageRank and that the two complex systems also have competitive performance relative to the respective state-of-the-art.For this reason we believe that SIGNAL/COLLECT is more generally suitable for designing scalable dynamic and complex systems that process large networks of data." @default.
- W2913308861 created "2019-02-21" @default.
- W2913308861 creator A5090012703 @default.
- W2913308861 date "2015-01-01" @default.
- W2913308861 modified "2023-09-27" @default.
- W2913308861 title "Scalable Graph Processing With SIGNAL/COLLECT" @default.
- W2913308861 doi "https://doi.org/10.5167/uzh-119575" @default.
- W2913308861 hasPublicationYear "2015" @default.
- W2913308861 type Work @default.
- W2913308861 sameAs 2913308861 @default.
- W2913308861 citedByCount "0" @default.
- W2913308861 crossrefType "dissertation" @default.
- W2913308861 hasAuthorship W2913308861A5090012703 @default.
- W2913308861 hasConcept C106891557 @default.
- W2913308861 hasConcept C120314980 @default.
- W2913308861 hasConcept C132525143 @default.
- W2913308861 hasConcept C151319957 @default.
- W2913308861 hasConcept C176225458 @default.
- W2913308861 hasConcept C199360897 @default.
- W2913308861 hasConcept C31258907 @default.
- W2913308861 hasConcept C34165917 @default.
- W2913308861 hasConcept C41008148 @default.
- W2913308861 hasConcept C48044578 @default.
- W2913308861 hasConcept C77088390 @default.
- W2913308861 hasConcept C80444323 @default.
- W2913308861 hasConceptScore W2913308861C106891557 @default.
- W2913308861 hasConceptScore W2913308861C120314980 @default.
- W2913308861 hasConceptScore W2913308861C132525143 @default.
- W2913308861 hasConceptScore W2913308861C151319957 @default.
- W2913308861 hasConceptScore W2913308861C176225458 @default.
- W2913308861 hasConceptScore W2913308861C199360897 @default.
- W2913308861 hasConceptScore W2913308861C31258907 @default.
- W2913308861 hasConceptScore W2913308861C34165917 @default.
- W2913308861 hasConceptScore W2913308861C41008148 @default.
- W2913308861 hasConceptScore W2913308861C48044578 @default.
- W2913308861 hasConceptScore W2913308861C77088390 @default.
- W2913308861 hasConceptScore W2913308861C80444323 @default.
- W2913308861 hasLocation W29133088611 @default.
- W2913308861 hasOpenAccess W2913308861 @default.
- W2913308861 hasPrimaryLocation W29133088611 @default.
- W2913308861 hasRelatedWork W1495663756 @default.
- W2913308861 hasRelatedWork W1963724978 @default.
- W2913308861 hasRelatedWork W1989539826 @default.
- W2913308861 hasRelatedWork W2021260891 @default.
- W2913308861 hasRelatedWork W2051052491 @default.
- W2913308861 hasRelatedWork W2219321399 @default.
- W2913308861 hasRelatedWork W2336307554 @default.
- W2913308861 hasRelatedWork W2398180708 @default.
- W2913308861 hasRelatedWork W2427836055 @default.
- W2913308861 hasRelatedWork W2583935708 @default.
- W2913308861 hasRelatedWork W2755191258 @default.
- W2913308861 hasRelatedWork W2765804752 @default.
- W2913308861 hasRelatedWork W2802376702 @default.
- W2913308861 hasRelatedWork W2807714896 @default.
- W2913308861 hasRelatedWork W2810596490 @default.
- W2913308861 hasRelatedWork W2862118860 @default.
- W2913308861 hasRelatedWork W2948262819 @default.
- W2913308861 hasRelatedWork W2991123332 @default.
- W2913308861 hasRelatedWork W3167152350 @default.
- W2913308861 hasRelatedWork W91958534 @default.
- W2913308861 isParatext "false" @default.
- W2913308861 isRetracted "false" @default.
- W2913308861 magId "2913308861" @default.
- W2913308861 workType "dissertation" @default.