Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913309878> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2913309878 endingPage "700" @default.
- W2913309878 startingPage "677" @default.
- W2913309878 abstract "The objective of this work is to study the applicability of various machine learning algorithms for the prediction of some rock properties which geoscientists usually define due to special laboratory analysis. We demonstrate that these special properties can be predicted only basing on routine core analysis (RCA) data. To validate the approach, core samples from the reservoir with soluble rock matrix components (salts) were tested within 100 + laboratory experiments. The challenge of the experiments was to characterize the rate of salts in cores and alteration of porosity and permeability after reservoir desalination due to drilling mud or water injection. For these three measured characteristics, we developed the relevant predictive models, which were based on the results of RCA and data on coring depth and top and bottom depths of productive horizons. To select the most accurate machine learning algorithm, a comparative analysis has been performed. It was shown that different algorithms work better in different models. However, two-hidden-layer neural network has demonstrated the best predictive ability and generalizability for all three rock characteristics jointly. The other algorithms, such as support vector machine and linear regression, also worked well on the dataset, but in particular cases. Overall, the applied approach allows predicting the alteration of porosity and permeability during desalination in porous rocks and also evaluating salt concentration without direct measurements in a laboratory. This work also shows that developed approaches could be applied for the prediction of other rock properties (residual brine and oil saturations, relative permeability, capillary pressure, and others), of which laboratory measurements are time-consuming and expensive." @default.
- W2913309878 created "2019-02-21" @default.
- W2913309878 creator A5004766000 @default.
- W2913309878 creator A5018473994 @default.
- W2913309878 creator A5068262247 @default.
- W2913309878 creator A5076668020 @default.
- W2913309878 date "2019-03-18" @default.
- W2913309878 modified "2023-10-16" @default.
- W2913309878 title "Prediction of Porosity and Permeability Alteration Based on Machine Learning Algorithms" @default.
- W2913309878 cites W1480376833 @default.
- W2913309878 cites W1498436455 @default.
- W2913309878 cites W1678356000 @default.
- W2913309878 cites W1995341919 @default.
- W2913309878 cites W2076063813 @default.
- W2913309878 cites W2082031736 @default.
- W2913309878 cites W2165966284 @default.
- W2913309878 cites W2231640468 @default.
- W2913309878 cites W2407258920 @default.
- W2913309878 cites W2599922510 @default.
- W2913309878 cites W2783152594 @default.
- W2913309878 cites W2786725883 @default.
- W2913309878 cites W2795971184 @default.
- W2913309878 cites W2884637555 @default.
- W2913309878 cites W2909763643 @default.
- W2913309878 cites W2911964244 @default.
- W2913309878 cites W3102476541 @default.
- W2913309878 cites W4242841269 @default.
- W2913309878 cites W4250589301 @default.
- W2913309878 cites W4295725981 @default.
- W2913309878 cites W4297957988 @default.
- W2913309878 cites W610302084 @default.
- W2913309878 doi "https://doi.org/10.1007/s11242-019-01265-3" @default.
- W2913309878 hasPublicationYear "2019" @default.
- W2913309878 type Work @default.
- W2913309878 sameAs 2913309878 @default.
- W2913309878 citedByCount "62" @default.
- W2913309878 countsByYear W29133098782019 @default.
- W2913309878 countsByYear W29133098782020 @default.
- W2913309878 countsByYear W29133098782021 @default.
- W2913309878 countsByYear W29133098782022 @default.
- W2913309878 countsByYear W29133098782023 @default.
- W2913309878 crossrefType "journal-article" @default.
- W2913309878 hasAuthorship W2913309878A5004766000 @default.
- W2913309878 hasAuthorship W2913309878A5018473994 @default.
- W2913309878 hasAuthorship W2913309878A5068262247 @default.
- W2913309878 hasAuthorship W2913309878A5076668020 @default.
- W2913309878 hasBestOaLocation W29133098782 @default.
- W2913309878 hasConcept C105569014 @default.
- W2913309878 hasConcept C11413529 @default.
- W2913309878 hasConcept C120882062 @default.
- W2913309878 hasConcept C127313418 @default.
- W2913309878 hasConcept C185592680 @default.
- W2913309878 hasConcept C187320778 @default.
- W2913309878 hasConcept C33556824 @default.
- W2913309878 hasConcept C41008148 @default.
- W2913309878 hasConcept C41625074 @default.
- W2913309878 hasConcept C55493867 @default.
- W2913309878 hasConcept C6648577 @default.
- W2913309878 hasConceptScore W2913309878C105569014 @default.
- W2913309878 hasConceptScore W2913309878C11413529 @default.
- W2913309878 hasConceptScore W2913309878C120882062 @default.
- W2913309878 hasConceptScore W2913309878C127313418 @default.
- W2913309878 hasConceptScore W2913309878C185592680 @default.
- W2913309878 hasConceptScore W2913309878C187320778 @default.
- W2913309878 hasConceptScore W2913309878C33556824 @default.
- W2913309878 hasConceptScore W2913309878C41008148 @default.
- W2913309878 hasConceptScore W2913309878C41625074 @default.
- W2913309878 hasConceptScore W2913309878C55493867 @default.
- W2913309878 hasConceptScore W2913309878C6648577 @default.
- W2913309878 hasIssue "2" @default.
- W2913309878 hasLocation W29133098781 @default.
- W2913309878 hasLocation W29133098782 @default.
- W2913309878 hasOpenAccess W2913309878 @default.
- W2913309878 hasPrimaryLocation W29133098781 @default.
- W2913309878 hasRelatedWork W1968803094 @default.
- W2913309878 hasRelatedWork W2121571321 @default.
- W2913309878 hasRelatedWork W2136343950 @default.
- W2913309878 hasRelatedWork W2676239570 @default.
- W2913309878 hasRelatedWork W2779770081 @default.
- W2913309878 hasRelatedWork W3040469027 @default.
- W2913309878 hasRelatedWork W3045428014 @default.
- W2913309878 hasRelatedWork W31959702 @default.
- W2913309878 hasRelatedWork W4235836405 @default.
- W2913309878 hasRelatedWork W4253214901 @default.
- W2913309878 hasVolume "128" @default.
- W2913309878 isParatext "false" @default.
- W2913309878 isRetracted "false" @default.
- W2913309878 magId "2913309878" @default.
- W2913309878 workType "article" @default.