Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913330134> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2913330134 endingPage "2804" @default.
- W2913330134 startingPage "2802" @default.
- W2913330134 abstract "Recent years have seen a growing interest in generating real-time epidemic forecasts to help control infectious diseases, prompted by a succession of global and regional outbreaks. Increased availability of epidemiological data and novel digital data streams such as search engine queries and social media (1, 2), together with the rise of machine learning and sophisticated statistical approaches, have injected new blood into the science of outbreak forecasts (3, 4). In parallel, mechanistic transmission models have benefited from computational advances and extensive data on the mobility and sociodemographic structure of human populations (5, 6). In this rapidly advancing research landscape, modeling consortiums have generated systematic model comparisons of the impact of new interventions and ensemble predictions of outbreak trajectory, for use by decision makers (7⇓⇓⇓⇓–12). Despite the rapid development of disease forecasting as a discipline, however, and the interest of public health policy makers in making better use of analytics tools to control outbreaks, forecasts are rarely operational in the same way that weather forecasts, extreme events, and climate predictions are. The influenza study by Reich et al. (13) in PNAS is a unique example of multiyear infectious disease forecasts featuring a variety of modeling approaches, with consistent model formulations and forecasting targets throughout the 7-y study period (13). This is a major improvement over previous model comparison studies that used different targets and time horizons and sometimes different epidemiological datasets.While there is considerable interest among modelers in advancing the science of disease forecasts, the level of confidence of the public health community in exploiting these predictions in real-world situations remains unclear. The disconnect is in part due to poor understanding of modeling concepts by policy experts, which is compounded by a lack of a well-established operational framework for using and … [↵][1]1To whom correspondence should be addressed. Email: viboudc{at}mail.nih.gov. [1]: #xref-corresp-1-1" @default.
- W2913330134 created "2019-02-21" @default.
- W2913330134 creator A5011535251 @default.
- W2913330134 creator A5046546654 @default.
- W2913330134 date "2019-02-08" @default.
- W2913330134 modified "2023-10-01" @default.
- W2913330134 title "The future of influenza forecasts" @default.
- W2913330134 cites W1789155650 @default.
- W2913330134 cites W1971333590 @default.
- W2913330134 cites W2006218290 @default.
- W2913330134 cites W2110349231 @default.
- W2913330134 cites W2117239687 @default.
- W2913330134 cites W2131295062 @default.
- W2913330134 cites W2139454171 @default.
- W2913330134 cites W2143469080 @default.
- W2913330134 cites W2486241280 @default.
- W2913330134 cites W2554926856 @default.
- W2913330134 cites W2559305335 @default.
- W2913330134 cites W2743602240 @default.
- W2913330134 cites W2747968860 @default.
- W2913330134 cites W2753964882 @default.
- W2913330134 cites W2789327676 @default.
- W2913330134 cites W2805339429 @default.
- W2913330134 cites W2909758842 @default.
- W2913330134 cites W4210318339 @default.
- W2913330134 doi "https://doi.org/10.1073/pnas.1822167116" @default.
- W2913330134 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6386701" @default.
- W2913330134 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30737293" @default.
- W2913330134 hasPublicationYear "2019" @default.
- W2913330134 type Work @default.
- W2913330134 sameAs 2913330134 @default.
- W2913330134 citedByCount "51" @default.
- W2913330134 countsByYear W29133301342019 @default.
- W2913330134 countsByYear W29133301342020 @default.
- W2913330134 countsByYear W29133301342021 @default.
- W2913330134 countsByYear W29133301342022 @default.
- W2913330134 countsByYear W29133301342023 @default.
- W2913330134 crossrefType "journal-article" @default.
- W2913330134 hasAuthorship W2913330134A5011535251 @default.
- W2913330134 hasAuthorship W2913330134A5046546654 @default.
- W2913330134 hasBestOaLocation W29133301341 @default.
- W2913330134 hasConcept C159047783 @default.
- W2913330134 hasConcept C70721500 @default.
- W2913330134 hasConcept C86803240 @default.
- W2913330134 hasConceptScore W2913330134C159047783 @default.
- W2913330134 hasConceptScore W2913330134C70721500 @default.
- W2913330134 hasConceptScore W2913330134C86803240 @default.
- W2913330134 hasIssue "8" @default.
- W2913330134 hasLocation W29133301341 @default.
- W2913330134 hasLocation W29133301342 @default.
- W2913330134 hasLocation W29133301343 @default.
- W2913330134 hasLocation W29133301344 @default.
- W2913330134 hasOpenAccess W2913330134 @default.
- W2913330134 hasPrimaryLocation W29133301341 @default.
- W2913330134 hasRelatedWork W1489156230 @default.
- W2913330134 hasRelatedWork W1994125379 @default.
- W2913330134 hasRelatedWork W2007075040 @default.
- W2913330134 hasRelatedWork W2015220664 @default.
- W2913330134 hasRelatedWork W2016295398 @default.
- W2913330134 hasRelatedWork W2078892060 @default.
- W2913330134 hasRelatedWork W2092264542 @default.
- W2913330134 hasRelatedWork W2135539943 @default.
- W2913330134 hasRelatedWork W2136471580 @default.
- W2913330134 hasRelatedWork W4317373171 @default.
- W2913330134 hasVolume "116" @default.
- W2913330134 isParatext "false" @default.
- W2913330134 isRetracted "false" @default.
- W2913330134 magId "2913330134" @default.
- W2913330134 workType "article" @default.