Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913333875> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2913333875 abstract "It is our great pleasure to welcome you to the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). The annual ACM SIGKDD conference is the premier international forum for data science, data mining, knowledge discovery and big data. It brings together researchers and practitioners from academia, industry, and government to share their ideas, research results and experiences. KDD-2014 features plenary presentations, paper presentations, poster sessions, workshops, tutorials, exhibits, and the KDD Cup competition. We are happy to announce that this year we are partnering with Bloomberg to emphasize our theme of Data Science for Social Good. To this end, part of our workshop and tutorial program will be held at the Bloomberg facilities together with Bloomberg-specific events, all focusing on issues pertaining to social good.Today, you hear a lot about data science, big data and data intensive computing. The core of this work is extracting knowledge and useful information from data, which for science leads to beautiful insights, and for applications leads to actions, alerts and decisions. The KDD community has always been at the center of this activity and it is clear from this conference that it will continue to drive this broader field of data science.This year we had a record number of submissions. There were 1036 submissions to the Research Track, and 151 papers were accepted. There were 197 submissions to the Industry and Government Track, and 44 papers were accepted.KDD also has a history of inviting talks that are of broad interest to the KDD community. This year we chose to have 4 plenary talks. A program committee also selected 8 talks to present at the Industry and Government track.A strength of the KDD conference is the number of workshops and tutorials that are co-located with it. This year there were 9 full-day workshops, 16 half-day workshops, and 12 tutorials. As part of our partnership with Bloomberg on the theme of social good, Bloomberg will have 3 workshops jointly located with our workshops at their New York Office.Our community is a unique blend of industry and academia, ranging from people starting their career to leaders in their respective fields. This year, we are piloting programs to facilitate networking amongst these groups. Specifically, we have a networking lounge for industry and job-seekers to meet and we helped find good matches. We also have a networking event focused on defining what a data science career looks like and have senior members meet young people to help them understand the skills needed and what a job in this discipline might entail." @default.
- W2913333875 created "2019-02-21" @default.
- W2913333875 creator A5003651471 @default.
- W2913333875 creator A5047798029 @default.
- W2913333875 creator A5081839926 @default.
- W2913333875 creator A5088640736 @default.
- W2913333875 creator A5091272738 @default.
- W2913333875 date "2014-08-24" @default.
- W2913333875 modified "2023-10-03" @default.
- W2913333875 title "Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining" @default.
- W2913333875 hasPublicationYear "2014" @default.
- W2913333875 type Work @default.
- W2913333875 sameAs 2913333875 @default.
- W2913333875 citedByCount "0" @default.
- W2913333875 crossrefType "proceedings-article" @default.
- W2913333875 hasAuthorship W2913333875A5003651471 @default.
- W2913333875 hasAuthorship W2913333875A5047798029 @default.
- W2913333875 hasAuthorship W2913333875A5081839926 @default.
- W2913333875 hasAuthorship W2913333875A5088640736 @default.
- W2913333875 hasAuthorship W2913333875A5091272738 @default.
- W2913333875 hasConcept C120567893 @default.
- W2913333875 hasConcept C124101348 @default.
- W2913333875 hasConcept C136764020 @default.
- W2913333875 hasConcept C138885662 @default.
- W2913333875 hasConcept C202444582 @default.
- W2913333875 hasConcept C2522767166 @default.
- W2913333875 hasConcept C2778137410 @default.
- W2913333875 hasConcept C33566652 @default.
- W2913333875 hasConcept C33923547 @default.
- W2913333875 hasConcept C41008148 @default.
- W2913333875 hasConcept C41895202 @default.
- W2913333875 hasConcept C75684735 @default.
- W2913333875 hasConcept C9652623 @default.
- W2913333875 hasConceptScore W2913333875C120567893 @default.
- W2913333875 hasConceptScore W2913333875C124101348 @default.
- W2913333875 hasConceptScore W2913333875C136764020 @default.
- W2913333875 hasConceptScore W2913333875C138885662 @default.
- W2913333875 hasConceptScore W2913333875C202444582 @default.
- W2913333875 hasConceptScore W2913333875C2522767166 @default.
- W2913333875 hasConceptScore W2913333875C2778137410 @default.
- W2913333875 hasConceptScore W2913333875C33566652 @default.
- W2913333875 hasConceptScore W2913333875C33923547 @default.
- W2913333875 hasConceptScore W2913333875C41008148 @default.
- W2913333875 hasConceptScore W2913333875C41895202 @default.
- W2913333875 hasConceptScore W2913333875C75684735 @default.
- W2913333875 hasConceptScore W2913333875C9652623 @default.
- W2913333875 hasOpenAccess W2913333875 @default.
- W2913333875 hasRelatedWork W1487684686 @default.
- W2913333875 hasRelatedWork W1526963249 @default.
- W2913333875 hasRelatedWork W1563274564 @default.
- W2913333875 hasRelatedWork W1574726415 @default.
- W2913333875 hasRelatedWork W1599655784 @default.
- W2913333875 hasRelatedWork W21288773 @default.
- W2913333875 hasRelatedWork W2279259627 @default.
- W2913333875 hasRelatedWork W2911357753 @default.
- W2913333875 hasRelatedWork W2911372038 @default.
- W2913333875 hasRelatedWork W2911840101 @default.
- W2913333875 hasRelatedWork W2911961737 @default.
- W2913333875 hasRelatedWork W2912754982 @default.
- W2913333875 hasRelatedWork W2913147410 @default.
- W2913333875 hasRelatedWork W2914301685 @default.
- W2913333875 hasRelatedWork W2914576582 @default.
- W2913333875 hasRelatedWork W2914896135 @default.
- W2913333875 hasRelatedWork W2917127574 @default.
- W2913333875 hasRelatedWork W3006484790 @default.
- W2913333875 hasRelatedWork W33832992 @default.
- W2913333875 hasRelatedWork W2914761779 @default.
- W2913333875 isParatext "false" @default.
- W2913333875 isRetracted "false" @default.
- W2913333875 magId "2913333875" @default.
- W2913333875 workType "article" @default.