Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913352800> ?p ?o ?g. }
- W2913352800 endingPage "258" @default.
- W2913352800 startingPage "238" @default.
- W2913352800 abstract "Classification of congestion patterns is important in many areas in traffic planning and management, ranging from policy appraisal, database design, to prediction and real-time control. One of the key constraints in applying machine learning techniques for classification is the availability of sufficient data (traffic patterns) with clear and undisputed labels, e.g. traffic pattern X or Y. The challenge is that labelling traffic patterns (e.g. combinations of congested and freely flow areas over time and space) is highly subjective. In our view this means that assessment of how well algorithms label the data should also include a qualitative component that focuses on what the found patterns really mean for traffic flow operations and applications. In this study, we investigate the application of clustering analysis to obtain labels automatically from the data, where we indeed first qualitatively assess how meaningful the found labels are, and subsequently test quantitatively how well the labels separate the resulting feature space. By transforming traffic measurements (speeds) into (colored) images, two different approaches are proposed to extract the features of a large number of traffic patterns for clustering: point-based and area-based. The point-based approach is widely applied in the image processing literature, and explores local interest points in images (i.e. where large changes occur in color intensity); whereas a new area-based approach combines domain knowledge with Watershed segmentation to partition the images into different spatial-temporal segments from which domain specific features, such as wide moving jam patterns, are extracted. The results show that the Watershed segmentation separates the traffic (congestion) patterns into more meaningful and separable classes, comparable to those that have been proposed in the literature. Since there is no ground-truth set of labels, the quantitative assessment tests how well both methods are able to separate the respective feature spaces they construct for the (large) database of traffic patterns. We argue that the more crisp this separation is; the better the labelling has turned out. For this quantitative comparison we train a multinomial classifier that maps unseen patterns to the labels discovered by each of the two labeling approaches. The most important result is that the classifier using the area-based feature vector achieves the highest average levels of confidence in its decisions to classify patterns, implying a highly separable feature vector space. We argue this is good news! Not only does the combination of image processing (Watershed) and domain knowledge (traffic flow characteristics) lead to meaningful labels that can be automatically retrieved from large databases of data; this method also leads to a more efficient separation of the resulting feature space. Our next endeavor is to further refine and use this method to develop a search engine for the (rapidly growing) 200 TB historical database of traffic data hosted by the Dutch National Datawarehouse (NDW)." @default.
- W2913352800 created "2019-02-21" @default.
- W2913352800 creator A5009421694 @default.
- W2913352800 creator A5052655645 @default.
- W2913352800 creator A5065893633 @default.
- W2913352800 creator A5069363273 @default.
- W2913352800 creator A5079555394 @default.
- W2913352800 date "2019-03-01" @default.
- W2913352800 modified "2023-10-16" @default.
- W2913352800 title "Feature extraction and clustering analysis of highway congestion" @default.
- W2913352800 cites W1128809682 @default.
- W2913352800 cites W1513927654 @default.
- W2913352800 cites W1522547150 @default.
- W2913352800 cites W1551942241 @default.
- W2913352800 cites W1699734612 @default.
- W2913352800 cites W1980902471 @default.
- W2913352800 cites W1986500162 @default.
- W2913352800 cites W1989984920 @default.
- W2913352800 cites W2011430131 @default.
- W2913352800 cites W2012715069 @default.
- W2913352800 cites W2013090149 @default.
- W2913352800 cites W2023171043 @default.
- W2913352800 cites W2038952578 @default.
- W2913352800 cites W2053653686 @default.
- W2913352800 cites W2057923756 @default.
- W2913352800 cites W2065830355 @default.
- W2913352800 cites W2076077609 @default.
- W2913352800 cites W2077522608 @default.
- W2913352800 cites W2081036000 @default.
- W2913352800 cites W2082533141 @default.
- W2913352800 cites W2108712612 @default.
- W2913352800 cites W2111308925 @default.
- W2913352800 cites W2119605622 @default.
- W2913352800 cites W2122111042 @default.
- W2913352800 cites W2145023731 @default.
- W2913352800 cites W2153233077 @default.
- W2913352800 cites W2154741421 @default.
- W2913352800 cites W2277961080 @default.
- W2913352800 cites W2773084720 @default.
- W2913352800 cites W4239510810 @default.
- W2913352800 cites W4239785091 @default.
- W2913352800 doi "https://doi.org/10.1016/j.trc.2019.01.017" @default.
- W2913352800 hasPublicationYear "2019" @default.
- W2913352800 type Work @default.
- W2913352800 sameAs 2913352800 @default.
- W2913352800 citedByCount "49" @default.
- W2913352800 countsByYear W29133528002019 @default.
- W2913352800 countsByYear W29133528002020 @default.
- W2913352800 countsByYear W29133528002021 @default.
- W2913352800 countsByYear W29133528002022 @default.
- W2913352800 countsByYear W29133528002023 @default.
- W2913352800 crossrefType "journal-article" @default.
- W2913352800 hasAuthorship W2913352800A5009421694 @default.
- W2913352800 hasAuthorship W2913352800A5052655645 @default.
- W2913352800 hasAuthorship W2913352800A5065893633 @default.
- W2913352800 hasAuthorship W2913352800A5069363273 @default.
- W2913352800 hasAuthorship W2913352800A5079555394 @default.
- W2913352800 hasBestOaLocation W29133528001 @default.
- W2913352800 hasConcept C114614502 @default.
- W2913352800 hasConcept C124101348 @default.
- W2913352800 hasConcept C138885662 @default.
- W2913352800 hasConcept C153180895 @default.
- W2913352800 hasConcept C154945302 @default.
- W2913352800 hasConcept C2776401178 @default.
- W2913352800 hasConcept C33923547 @default.
- W2913352800 hasConcept C41008148 @default.
- W2913352800 hasConcept C41895202 @default.
- W2913352800 hasConcept C42812 @default.
- W2913352800 hasConcept C52622490 @default.
- W2913352800 hasConcept C73555534 @default.
- W2913352800 hasConcept C89600930 @default.
- W2913352800 hasConceptScore W2913352800C114614502 @default.
- W2913352800 hasConceptScore W2913352800C124101348 @default.
- W2913352800 hasConceptScore W2913352800C138885662 @default.
- W2913352800 hasConceptScore W2913352800C153180895 @default.
- W2913352800 hasConceptScore W2913352800C154945302 @default.
- W2913352800 hasConceptScore W2913352800C2776401178 @default.
- W2913352800 hasConceptScore W2913352800C33923547 @default.
- W2913352800 hasConceptScore W2913352800C41008148 @default.
- W2913352800 hasConceptScore W2913352800C41895202 @default.
- W2913352800 hasConceptScore W2913352800C42812 @default.
- W2913352800 hasConceptScore W2913352800C52622490 @default.
- W2913352800 hasConceptScore W2913352800C73555534 @default.
- W2913352800 hasConceptScore W2913352800C89600930 @default.
- W2913352800 hasLocation W29133528001 @default.
- W2913352800 hasOpenAccess W2913352800 @default.
- W2913352800 hasPrimaryLocation W29133528001 @default.
- W2913352800 hasRelatedWork W1964120219 @default.
- W2913352800 hasRelatedWork W2000165426 @default.
- W2913352800 hasRelatedWork W2114557664 @default.
- W2913352800 hasRelatedWork W2144059113 @default.
- W2913352800 hasRelatedWork W2146076056 @default.
- W2913352800 hasRelatedWork W2385132419 @default.
- W2913352800 hasRelatedWork W2546942002 @default.
- W2913352800 hasRelatedWork W2772780115 @default.
- W2913352800 hasRelatedWork W2811390910 @default.
- W2913352800 hasRelatedWork W3003836766 @default.
- W2913352800 hasVolume "100" @default.