Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913360047> ?p ?o ?g. }
- W2913360047 endingPage "1393" @default.
- W2913360047 startingPage "1377" @default.
- W2913360047 abstract "Rain streaks, particularly in heavy rain, not only degrade visibility but also make many computer vision algorithms fail to function properly. In this paper, we address this visibility problem by focusing on single-image rain removal, even in the presence of dense rain streaks and rain-streak accumulation, which is visually similar to mist or fog. To achieve this, we introduce a new rain model and a deep learning architecture. Our rain model incorporates a binary rain map indicating rain-streak regions, and accommodates various shapes, directions, and sizes of overlapping rain streaks, as well as rain accumulation, to model heavy rain. Based on this model, we construct a multi-task deep network, which jointly learns three targets: the binary rain-streak map, rain streak layers, and clean background, which is our ultimate output. To generate features that can be invariant to rain steaks, we introduce a contextual dilated network, which is able to exploit regional contextual information. To handle various shapes and directions of overlapping rain streaks, our strategy is to utilize a recurrent process that progressively removes rain streaks. Our binary map provides a constraint and thus additional information to train our network. Extensive evaluation on real images, particularly in heavy rain, shows the effectiveness of our model and architecture." @default.
- W2913360047 created "2019-02-21" @default.
- W2913360047 creator A5003527952 @default.
- W2913360047 creator A5033884558 @default.
- W2913360047 creator A5039765869 @default.
- W2913360047 creator A5070069277 @default.
- W2913360047 creator A5070884682 @default.
- W2913360047 creator A5082012882 @default.
- W2913360047 date "2020-06-01" @default.
- W2913360047 modified "2023-10-18" @default.
- W2913360047 title "Joint Rain Detection and Removal from a Single Image with Contextualized Deep Networks" @default.
- W2913360047 cites W1457323852 @default.
- W2913360047 cites W1572507715 @default.
- W2913360047 cites W1885185971 @default.
- W2913360047 cites W1965572510 @default.
- W2913360047 cites W1976056157 @default.
- W2913360047 cites W1986266272 @default.
- W2913360047 cites W1992687477 @default.
- W2913360047 cites W2005876512 @default.
- W2913360047 cites W2017416107 @default.
- W2913360047 cites W2037227137 @default.
- W2913360047 cites W2054604489 @default.
- W2913360047 cites W2081140338 @default.
- W2913360047 cites W2084053957 @default.
- W2913360047 cites W2099106464 @default.
- W2913360047 cites W2100001370 @default.
- W2913360047 cites W2113569611 @default.
- W2913360047 cites W2114770744 @default.
- W2913360047 cites W2119535410 @default.
- W2913360047 cites W2121396509 @default.
- W2913360047 cites W2121880036 @default.
- W2913360047 cites W2121927366 @default.
- W2913360047 cites W2122596619 @default.
- W2913360047 cites W2132947399 @default.
- W2913360047 cites W2133665775 @default.
- W2913360047 cites W2142683286 @default.
- W2913360047 cites W2154621477 @default.
- W2913360047 cites W2154815154 @default.
- W2913360047 cites W2155893237 @default.
- W2913360047 cites W2160477239 @default.
- W2913360047 cites W2160835070 @default.
- W2913360047 cites W2163146621 @default.
- W2913360047 cites W2209874411 @default.
- W2913360047 cites W2217895792 @default.
- W2913360047 cites W2254039850 @default.
- W2913360047 cites W2256362396 @default.
- W2913360047 cites W2466666260 @default.
- W2913360047 cites W2467473805 @default.
- W2913360047 cites W2475287302 @default.
- W2913360047 cites W2508457857 @default.
- W2913360047 cites W2509784253 @default.
- W2913360047 cites W2519481857 @default.
- W2913360047 cites W2534578327 @default.
- W2913360047 cites W2559264300 @default.
- W2913360047 cites W2737258237 @default.
- W2913360047 cites W2738588019 @default.
- W2913360047 cites W2740336064 @default.
- W2913360047 cites W2740982616 @default.
- W2913360047 cites W2765620243 @default.
- W2913360047 cites W2767863271 @default.
- W2913360047 cites W2780930362 @default.
- W2913360047 cites W2790883954 @default.
- W2913360047 cites W2791076925 @default.
- W2913360047 cites W2793186802 @default.
- W2913360047 cites W2798744505 @default.
- W2913360047 cites W2884800852 @default.
- W2913360047 cites W2891269274 @default.
- W2913360047 cites W2896232819 @default.
- W2913360047 cites W2901921200 @default.
- W2913360047 cites W2941143570 @default.
- W2913360047 cites W2962737519 @default.
- W2913360047 cites W2962754725 @default.
- W2913360047 cites W2962930383 @default.
- W2913360047 cites W2963169265 @default.
- W2913360047 cites W2963800716 @default.
- W2913360047 cites W2964023155 @default.
- W2913360047 cites W2964212750 @default.
- W2913360047 cites W3104196124 @default.
- W2913360047 cites W3136413417 @default.
- W2913360047 doi "https://doi.org/10.1109/tpami.2019.2895793" @default.
- W2913360047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30703011" @default.
- W2913360047 hasPublicationYear "2020" @default.
- W2913360047 type Work @default.
- W2913360047 sameAs 2913360047 @default.
- W2913360047 citedByCount "222" @default.
- W2913360047 countsByYear W29133600472018 @default.
- W2913360047 countsByYear W29133600472019 @default.
- W2913360047 countsByYear W29133600472020 @default.
- W2913360047 countsByYear W29133600472021 @default.
- W2913360047 countsByYear W29133600472022 @default.
- W2913360047 countsByYear W29133600472023 @default.
- W2913360047 crossrefType "journal-article" @default.
- W2913360047 hasAuthorship W2913360047A5003527952 @default.
- W2913360047 hasAuthorship W2913360047A5033884558 @default.
- W2913360047 hasAuthorship W2913360047A5039765869 @default.
- W2913360047 hasAuthorship W2913360047A5070069277 @default.
- W2913360047 hasAuthorship W2913360047A5070884682 @default.
- W2913360047 hasAuthorship W2913360047A5082012882 @default.