Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913376044> ?p ?o ?g. }
- W2913376044 abstract "Recently, the population of the world has increased along with health problems. Diabetes mellitus disease as an example causes issues to the health of many patients globally. The task of this chapter is to develop a dynamic and intelligent decision support system for patients with different diseases, and it aims at examining machine-learning techniques supported by optimization techniques. Artificial neural networks have been used in healthcare for several decades. Most research works utilize multilayer layer perceptron (MLP) trained with back propagation (BP) learning algorithm to achieve diabetes mellitus classification. Nonetheless, MLP has some drawbacks, such as, convergence, which can be slow; local minima can affect the training process. It is hard to scale and cannot be used with time series data sets. To overcome these drawbacks, long short-term memory (LSTM) is suggested, which is a more advanced form of recurrent neural networks. In this chapter, adaptable LSTM trained with two optimizing algorithms instead of the back propagation learning algorithm is presented. The optimization algorithms are biogeography-based optimization (BBO) and genetic algorithm (GA). Dataset is collected locally and another benchmark dataset is used as well. Finally, the datasets fed into adaptable models; LSTM with BBO (LSTMBBO) and LSTM with GA (LSTMGA) for classification purposes. The experimental and testing results are compared and they are promising. This system helps physicians and doctors to provide proper health treatment for patients with diabetes mellitus. Details of source code and implementation of our system can be obtained in the following link “https://github.com/hamakamal/LSTM.”" @default.
- W2913376044 created "2019-02-21" @default.
- W2913376044 creator A5002985400 @default.
- W2913376044 creator A5012491705 @default.
- W2913376044 creator A5015858874 @default.
- W2913376044 creator A5060412451 @default.
- W2913376044 date "2019-01-01" @default.
- W2913376044 modified "2023-09-24" @default.
- W2913376044 title "Improvement of Variant Adaptable LSTM Trained With Metaheuristic Algorithms for Healthcare Analysis" @default.
- W2913376044 cites W1583858980 @default.
- W2913376044 cites W1969557815 @default.
- W2913376044 cites W1969594433 @default.
- W2913376044 cites W1981530348 @default.
- W2913376044 cites W2012693097 @default.
- W2913376044 cites W2031099085 @default.
- W2913376044 cites W2034613413 @default.
- W2913376044 cites W2035843105 @default.
- W2913376044 cites W2051656235 @default.
- W2913376044 cites W2054678555 @default.
- W2913376044 cites W2055854250 @default.
- W2913376044 cites W2066698760 @default.
- W2913376044 cites W2070665556 @default.
- W2913376044 cites W2072389042 @default.
- W2913376044 cites W2084323233 @default.
- W2913376044 cites W2088585631 @default.
- W2913376044 cites W2090701332 @default.
- W2913376044 cites W2131587651 @default.
- W2913376044 cites W2137959503 @default.
- W2913376044 cites W2169943818 @default.
- W2913376044 cites W2170479596 @default.
- W2913376044 cites W2490948353 @default.
- W2913376044 cites W2810209625 @default.
- W2913376044 doi "https://doi.org/10.4018/978-1-5225-7796-6.ch006" @default.
- W2913376044 hasPublicationYear "2019" @default.
- W2913376044 type Work @default.
- W2913376044 sameAs 2913376044 @default.
- W2913376044 citedByCount "4" @default.
- W2913376044 countsByYear W29133760442020 @default.
- W2913376044 countsByYear W29133760442021 @default.
- W2913376044 crossrefType "book-chapter" @default.
- W2913376044 hasAuthorship W2913376044A5002985400 @default.
- W2913376044 hasAuthorship W2913376044A5012491705 @default.
- W2913376044 hasAuthorship W2913376044A5015858874 @default.
- W2913376044 hasAuthorship W2913376044A5060412451 @default.
- W2913376044 hasConcept C11413529 @default.
- W2913376044 hasConcept C119857082 @default.
- W2913376044 hasConcept C13280743 @default.
- W2913376044 hasConcept C134306372 @default.
- W2913376044 hasConcept C147168706 @default.
- W2913376044 hasConcept C154945302 @default.
- W2913376044 hasConcept C155032097 @default.
- W2913376044 hasConcept C185798385 @default.
- W2913376044 hasConcept C186633575 @default.
- W2913376044 hasConcept C205649164 @default.
- W2913376044 hasConcept C33923547 @default.
- W2913376044 hasConcept C41008148 @default.
- W2913376044 hasConcept C50644808 @default.
- W2913376044 hasConcept C60908668 @default.
- W2913376044 hasConcept C8880873 @default.
- W2913376044 hasConceptScore W2913376044C11413529 @default.
- W2913376044 hasConceptScore W2913376044C119857082 @default.
- W2913376044 hasConceptScore W2913376044C13280743 @default.
- W2913376044 hasConceptScore W2913376044C134306372 @default.
- W2913376044 hasConceptScore W2913376044C147168706 @default.
- W2913376044 hasConceptScore W2913376044C154945302 @default.
- W2913376044 hasConceptScore W2913376044C155032097 @default.
- W2913376044 hasConceptScore W2913376044C185798385 @default.
- W2913376044 hasConceptScore W2913376044C186633575 @default.
- W2913376044 hasConceptScore W2913376044C205649164 @default.
- W2913376044 hasConceptScore W2913376044C33923547 @default.
- W2913376044 hasConceptScore W2913376044C41008148 @default.
- W2913376044 hasConceptScore W2913376044C50644808 @default.
- W2913376044 hasConceptScore W2913376044C60908668 @default.
- W2913376044 hasConceptScore W2913376044C8880873 @default.
- W2913376044 hasLocation W29133760441 @default.
- W2913376044 hasOpenAccess W2913376044 @default.
- W2913376044 hasPrimaryLocation W29133760441 @default.
- W2913376044 hasRelatedWork W1977113083 @default.
- W2913376044 hasRelatedWork W2022473643 @default.
- W2913376044 hasRelatedWork W2097519102 @default.
- W2913376044 hasRelatedWork W2566532280 @default.
- W2913376044 hasRelatedWork W2786230937 @default.
- W2913376044 hasRelatedWork W2889423986 @default.
- W2913376044 hasRelatedWork W2921401468 @default.
- W2913376044 hasRelatedWork W2953387926 @default.
- W2913376044 hasRelatedWork W2970160078 @default.
- W2913376044 hasRelatedWork W2982206315 @default.
- W2913376044 hasRelatedWork W3009448603 @default.
- W2913376044 hasRelatedWork W3019833435 @default.
- W2913376044 hasRelatedWork W3020201053 @default.
- W2913376044 hasRelatedWork W3045525736 @default.
- W2913376044 hasRelatedWork W3118406530 @default.
- W2913376044 hasRelatedWork W3123811730 @default.
- W2913376044 hasRelatedWork W3167617779 @default.
- W2913376044 hasRelatedWork W3169509541 @default.
- W2913376044 hasRelatedWork W3199827220 @default.
- W2913376044 hasRelatedWork W3203304270 @default.
- W2913376044 isParatext "false" @default.
- W2913376044 isRetracted "false" @default.
- W2913376044 magId "2913376044" @default.