Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913382885> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2913382885 abstract "Subjects affected by Type I Diabetes (T1D) are constantly confronted with the complicated problem of administering themselves an adequate amount of insulin, so as to keep their blood-glucose concentration in a nearly physiological range. Recently, powerful technological tools have been developed to better face this challenge, in particular the so-called Artificial Pancreas (AP). Unluckily, the AP actuator, an insulin pump, is subject to faults, with potential serious consequences for subjects' safety. This calls for the development of advanced fault detection (FD) methods, leveraging the unprecedented data availability in this application. In this paper we tackle the problem of detecting insulin pump malfunctioning using a model-free approach, so that the complex sub-task of identifying a model of patients physiology is avoided. Moreover, we employed unsupervised methods since labeled data are hardly available in practice. The adopted data-driven Anomaly Detection (AD) methods are Local Outlier Factor and Connectivity-based Outlier Factor. The methods are applied on a feature set able to account for the physiological dynamics of T1D patients. The proposed algorithms are tested on a synthetic dataset, generated using the “UVA/Padova Type 1 Diabetic Simulator”, an accurate nonlinear computer simulator of the T1D subject physiology. Both methods show precision ~75% and recall ~60%• The described approach is suitable both for embedding in medical devices, such as the AP, and implementation in cloud-based remote monitoring systems." @default.
- W2913382885 created "2019-02-21" @default.
- W2913382885 creator A5013219153 @default.
- W2913382885 creator A5026228486 @default.
- W2913382885 creator A5026617079 @default.
- W2913382885 creator A5032614224 @default.
- W2913382885 creator A5066259658 @default.
- W2913382885 date "2018-12-01" @default.
- W2913382885 modified "2023-09-23" @default.
- W2913382885 title "Fault Detection in Artificial Pancreas: A Model-Free approach" @default.
- W2913382885 cites W1584412742 @default.
- W2913382885 cites W1966562602 @default.
- W2913382885 cites W1966716734 @default.
- W2913382885 cites W1978587779 @default.
- W2913382885 cites W1988072107 @default.
- W2913382885 cites W1996070385 @default.
- W2913382885 cites W2002371885 @default.
- W2913382885 cites W2020701171 @default.
- W2913382885 cites W2023460020 @default.
- W2913382885 cites W2028300946 @default.
- W2913382885 cites W2047013296 @default.
- W2913382885 cites W2101617661 @default.
- W2913382885 cites W2129995532 @default.
- W2913382885 cites W2138387973 @default.
- W2913382885 cites W2144182447 @default.
- W2913382885 cites W2168508655 @default.
- W2913382885 cites W2171613573 @default.
- W2913382885 cites W2181256817 @default.
- W2913382885 cites W2227454888 @default.
- W2913382885 cites W2519750058 @default.
- W2913382885 cites W2579439002 @default.
- W2913382885 cites W2750839980 @default.
- W2913382885 cites W2124347376 @default.
- W2913382885 doi "https://doi.org/10.1109/cdc.2018.8619048" @default.
- W2913382885 hasPublicationYear "2018" @default.
- W2913382885 type Work @default.
- W2913382885 sameAs 2913382885 @default.
- W2913382885 citedByCount "3" @default.
- W2913382885 countsByYear W29133828852019 @default.
- W2913382885 countsByYear W29133828852020 @default.
- W2913382885 countsByYear W29133828852022 @default.
- W2913382885 crossrefType "proceedings-article" @default.
- W2913382885 hasAuthorship W2913382885A5013219153 @default.
- W2913382885 hasAuthorship W2913382885A5026228486 @default.
- W2913382885 hasAuthorship W2913382885A5026617079 @default.
- W2913382885 hasAuthorship W2913382885A5032614224 @default.
- W2913382885 hasAuthorship W2913382885A5066259658 @default.
- W2913382885 hasConcept C134018914 @default.
- W2913382885 hasConcept C152745839 @default.
- W2913382885 hasConcept C154945302 @default.
- W2913382885 hasConcept C172707124 @default.
- W2913382885 hasConcept C2780353609 @default.
- W2913382885 hasConcept C2781232474 @default.
- W2913382885 hasConcept C41008148 @default.
- W2913382885 hasConcept C555293320 @default.
- W2913382885 hasConcept C71924100 @default.
- W2913382885 hasConceptScore W2913382885C134018914 @default.
- W2913382885 hasConceptScore W2913382885C152745839 @default.
- W2913382885 hasConceptScore W2913382885C154945302 @default.
- W2913382885 hasConceptScore W2913382885C172707124 @default.
- W2913382885 hasConceptScore W2913382885C2780353609 @default.
- W2913382885 hasConceptScore W2913382885C2781232474 @default.
- W2913382885 hasConceptScore W2913382885C41008148 @default.
- W2913382885 hasConceptScore W2913382885C555293320 @default.
- W2913382885 hasConceptScore W2913382885C71924100 @default.
- W2913382885 hasLocation W29133828851 @default.
- W2913382885 hasOpenAccess W2913382885 @default.
- W2913382885 hasPrimaryLocation W29133828851 @default.
- W2913382885 hasRelatedWork W1532673373 @default.
- W2913382885 hasRelatedWork W154154853 @default.
- W2913382885 hasRelatedWork W2326424483 @default.
- W2913382885 hasRelatedWork W2382415248 @default.
- W2913382885 hasRelatedWork W2579439002 @default.
- W2913382885 hasRelatedWork W2748952813 @default.
- W2913382885 hasRelatedWork W2894932567 @default.
- W2913382885 hasRelatedWork W2897108147 @default.
- W2913382885 hasRelatedWork W4233176165 @default.
- W2913382885 hasRelatedWork W2522780941 @default.
- W2913382885 isParatext "false" @default.
- W2913382885 isRetracted "false" @default.
- W2913382885 magId "2913382885" @default.
- W2913382885 workType "article" @default.