Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913387890> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2913387890 abstract "Owing to the popularized utilization of academic search engines, such as Google Scholar or Microsoft Academic, the information that a researcher can conveniently access is unlimited. Especially in the domain of supply chain and transportation, where the academic publications are text-heavy and algorithm-driven, it is virtually impossible for one to follow the large amount of developments that is being created on a day-to-day basis. This poses a major barrier during literature review. To that end, the conventional literature-review methodology needs to be revised; text mining has strong potential in this aspect. In the earlier parts of this series of papers, technology infrastructure (Part I) and abbreviation extraction (Part II) have been studied. Both of those analyses focus on analyzing the words in a given set of documents. In Part III, moving from words to semantics, the task of automatic summarization of research papers is explored. More specifically, the TextRank algorithm is used to extract top N most important sentences from a paper, which could significantly boost the efficiency in scanning documents during literature review." @default.
- W2913387890 created "2019-02-21" @default.
- W2913387890 creator A5003011137 @default.
- W2913387890 creator A5024069022 @default.
- W2913387890 date "2018-12-01" @default.
- W2913387890 modified "2023-10-16" @default.
- W2913387890 title "Performing literature review using text mining, Part III: Summarizing articles using TextRank" @default.
- W2913387890 cites W2066636486 @default.
- W2913387890 cites W2078862361 @default.
- W2913387890 cites W2624708295 @default.
- W2913387890 cites W2773971719 @default.
- W2913387890 cites W2782865819 @default.
- W2913387890 cites W2783701226 @default.
- W2913387890 cites W2792921542 @default.
- W2913387890 cites W2805503300 @default.
- W2913387890 doi "https://doi.org/10.1109/bigdata.2018.8622408" @default.
- W2913387890 hasPublicationYear "2018" @default.
- W2913387890 type Work @default.
- W2913387890 sameAs 2913387890 @default.
- W2913387890 citedByCount "2" @default.
- W2913387890 countsByYear W29133878902023 @default.
- W2913387890 crossrefType "proceedings-article" @default.
- W2913387890 hasAuthorship W2913387890A5003011137 @default.
- W2913387890 hasAuthorship W2913387890A5024069022 @default.
- W2913387890 hasConcept C204321447 @default.
- W2913387890 hasConcept C23123220 @default.
- W2913387890 hasConcept C2522767166 @default.
- W2913387890 hasConcept C41008148 @default.
- W2913387890 hasConceptScore W2913387890C204321447 @default.
- W2913387890 hasConceptScore W2913387890C23123220 @default.
- W2913387890 hasConceptScore W2913387890C2522767166 @default.
- W2913387890 hasConceptScore W2913387890C41008148 @default.
- W2913387890 hasLocation W29133878901 @default.
- W2913387890 hasOpenAccess W2913387890 @default.
- W2913387890 hasPrimaryLocation W29133878901 @default.
- W2913387890 hasRelatedWork W2115485936 @default.
- W2913387890 hasRelatedWork W2144190808 @default.
- W2913387890 hasRelatedWork W2357241418 @default.
- W2913387890 hasRelatedWork W2366644548 @default.
- W2913387890 hasRelatedWork W2368651715 @default.
- W2913387890 hasRelatedWork W2376314740 @default.
- W2913387890 hasRelatedWork W2384888906 @default.
- W2913387890 hasRelatedWork W2611614995 @default.
- W2913387890 hasRelatedWork W2789919619 @default.
- W2913387890 hasRelatedWork W3107474891 @default.
- W2913387890 isParatext "false" @default.
- W2913387890 isRetracted "false" @default.
- W2913387890 magId "2913387890" @default.
- W2913387890 workType "article" @default.