Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913422688> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2913422688 abstract "In this thesis, an imaging technique that utilizes sparsely sampled, multi-component geophone data and a dense surface distributed acoustic sensor (DAS) acquisition is proposed. The PoroTomo survey at Brady's Natural Lab consisted of 238 multi-component geophones that are spaced anywhere from 60 meters to 150 meters apart. This proves to be a difficult migration problem with such sparse spacing. Fortunately, the PoroTomo survey also included 9 km of surface DAS fiber placed in a variety of orientations. DAS, however, can only record particle motion in the direction that it is oriented. After a broad literature review, it has been found that previous surface DAS surveys have come to be inconclusive regarding the feasibility of using the fiber by itself. These studies, however, only utilize a vertical source in short offsets. Assuming a flat-layered Earth, a P-wave reflection will not show data on a DAS fiber as the particle motion is not polarized properly. The PoroTomo survey utilized a 3-C source that allowed for the testing and proof of this hypothesis. Both 2-D and 3-D numerical experiments are performed to test the feasibility of using multi-component geophone and DAS data together. In 2-D, a reflectivity model is created from the local fault model in the PoroTomo Survey. This provided a variety of structural dips to test the imaging technique. It was found that using an S-source rather than a P-source with these models produced a much sharper resulting image. A quantitative analysis is further performed to provide an unbiased perspective on the results. The quantitative analysis utilized both energy norm image filtering and a convolutional neural network to prove that distributed sensors add value to imaging efforts with sparsely-sampled, multi-component geophones. The 2-D example is an idealized experiment. A more extreme example is performed in 3-D to confirm the conclusions made in 2-D. A methodology to model DAS data in 3-D is presented prior to showing examples of utilizing the two data types together for imaging. The resulting images in 3-D are low frequency due to the velocity model and stability limitations. Quantitative analysis is also required for an unbiased perspective on the results. The quantitative analysis utilized only the energy norm image filtering technique in 3-D as the machine learning algorithm is not able to achieve a reasonable cross-validation accuracy. The results from energy norm image filtering show that utilizing DAS in surface surveys with a sparse multi-component geophone acquisition proves to be useful in reducing the number of false positives by a small fraction. This experiment, however, is still considered inconclusive in regards to identifying if DAS can add value to sparsely sampled geophone data because the geometry of the DAS acquisition is so unique. A more regular experiment must be performed prior to making such conclusions, so 2-D lines of fiber were utilized instead of the PoroTomo acquisition geometry. The 2-D DAS acquisition increases identifying the true positives…" @default.
- W2913422688 created "2019-02-21" @default.
- W2913422688 creator A5041852796 @default.
- W2913422688 date "2018-06-06" @default.
- W2913422688 modified "2023-09-28" @default.
- W2913422688 title "Feasibility of using distributed acoustic sensors in surface seismic application, The" @default.
- W2913422688 hasPublicationYear "2018" @default.
- W2913422688 type Work @default.
- W2913422688 sameAs 2913422688 @default.
- W2913422688 citedByCount "0" @default.
- W2913422688 crossrefType "dissertation" @default.
- W2913422688 hasAuthorship W2913422688A5041852796 @default.
- W2913422688 hasConcept C111919701 @default.
- W2913422688 hasConcept C121332964 @default.
- W2913422688 hasConcept C127313418 @default.
- W2913422688 hasConcept C158543913 @default.
- W2913422688 hasConcept C163985040 @default.
- W2913422688 hasConcept C165205528 @default.
- W2913422688 hasConcept C168167062 @default.
- W2913422688 hasConcept C194232370 @default.
- W2913422688 hasConcept C199360897 @default.
- W2913422688 hasConcept C21651689 @default.
- W2913422688 hasConcept C24890656 @default.
- W2913422688 hasConcept C41008148 @default.
- W2913422688 hasConcept C54187759 @default.
- W2913422688 hasConcept C62649853 @default.
- W2913422688 hasConcept C65682993 @default.
- W2913422688 hasConcept C76155785 @default.
- W2913422688 hasConcept C97355855 @default.
- W2913422688 hasConceptScore W2913422688C111919701 @default.
- W2913422688 hasConceptScore W2913422688C121332964 @default.
- W2913422688 hasConceptScore W2913422688C127313418 @default.
- W2913422688 hasConceptScore W2913422688C158543913 @default.
- W2913422688 hasConceptScore W2913422688C163985040 @default.
- W2913422688 hasConceptScore W2913422688C165205528 @default.
- W2913422688 hasConceptScore W2913422688C168167062 @default.
- W2913422688 hasConceptScore W2913422688C194232370 @default.
- W2913422688 hasConceptScore W2913422688C199360897 @default.
- W2913422688 hasConceptScore W2913422688C21651689 @default.
- W2913422688 hasConceptScore W2913422688C24890656 @default.
- W2913422688 hasConceptScore W2913422688C41008148 @default.
- W2913422688 hasConceptScore W2913422688C54187759 @default.
- W2913422688 hasConceptScore W2913422688C62649853 @default.
- W2913422688 hasConceptScore W2913422688C65682993 @default.
- W2913422688 hasConceptScore W2913422688C76155785 @default.
- W2913422688 hasConceptScore W2913422688C97355855 @default.
- W2913422688 hasLocation W29134226881 @default.
- W2913422688 hasOpenAccess W2913422688 @default.
- W2913422688 hasPrimaryLocation W29134226881 @default.
- W2913422688 hasRelatedWork W1605879935 @default.
- W2913422688 hasRelatedWork W2077606829 @default.
- W2913422688 hasRelatedWork W2101817583 @default.
- W2913422688 hasRelatedWork W2183753900 @default.
- W2913422688 hasRelatedWork W2312759783 @default.
- W2913422688 hasRelatedWork W2321471608 @default.
- W2913422688 hasRelatedWork W2359281009 @default.
- W2913422688 hasRelatedWork W2563075125 @default.
- W2913422688 hasRelatedWork W2616205501 @default.
- W2913422688 hasRelatedWork W2621220258 @default.
- W2913422688 hasRelatedWork W2765550650 @default.
- W2913422688 hasRelatedWork W2784009891 @default.
- W2913422688 hasRelatedWork W2970232079 @default.
- W2913422688 hasRelatedWork W2974639024 @default.
- W2913422688 hasRelatedWork W3001431070 @default.
- W2913422688 hasRelatedWork W3123881639 @default.
- W2913422688 hasRelatedWork W3213950115 @default.
- W2913422688 hasRelatedWork W56969369 @default.
- W2913422688 hasRelatedWork W183224451 @default.
- W2913422688 hasRelatedWork W187129958 @default.
- W2913422688 isParatext "false" @default.
- W2913422688 isRetracted "false" @default.
- W2913422688 magId "2913422688" @default.
- W2913422688 workType "dissertation" @default.