Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913426552> ?p ?o ?g. }
- W2913426552 endingPage "86" @default.
- W2913426552 startingPage "67" @default.
- W2913426552 abstract "One of the more principled methods of performing model selection is via Bayes factors. However, calculating Bayes factors requires marginal likelihoods, which are integrals over the entire parameter space, making estimation of Bayes factors for models with more than a few parameters a significant computational challenge. Here, we provide a tutorial review of two Monte Carlo techniques rarely used in psychology that efficiently compute marginal likelihoods: thermodynamic integration (Friel & Pettitt, 2008; Lartillot & Philippe, 2006) and steppingstone sampling (Xie, Lewis, Fan, Kuo, & Chen, 2011). The methods are general and can be easily implemented in existing MCMC code; we provide both the details for implementation and associated R code for the interested reader. While Bayesian toolkits implementing standard statistical analyses (e.g., JASP Team, 2017; Morey & Rouder, 2015) often compute Bayes factors for the researcher, those using Bayesian approaches to evaluate cognitive models are usually left to compute Bayes factors for themselves. Here, we provide examples of the methods by computing marginal likelihoods for a moderately complex model of choice response time, the Linear Ballistic Accumulator model (Brown & Heathcote, 2008), and compare them to findings of Evans and Brown (2017), who used a brute force technique. We then present a derivation of TI and SS within a hierarchical framework, provide results of a model recovery case study using hierarchical models, and show an application to empirical data. A companion R package is available at the Open Science Framework: https://osf.io/jpnb4." @default.
- W2913426552 created "2019-02-21" @default.
- W2913426552 creator A5045402168 @default.
- W2913426552 creator A5058881122 @default.
- W2913426552 creator A5079561527 @default.
- W2913426552 creator A5091081681 @default.
- W2913426552 date "2019-04-01" @default.
- W2913426552 modified "2023-09-23" @default.
- W2913426552 title "Thermodynamic integration and steppingstone sampling methods for estimating Bayes factors: A tutorial" @default.
- W2913426552 cites W1513873506 @default.
- W2913426552 cites W1941028167 @default.
- W2913426552 cites W1990119892 @default.
- W2913426552 cites W1995009208 @default.
- W2913426552 cites W1999228575 @default.
- W2913426552 cites W2004607078 @default.
- W2913426552 cites W2008205728 @default.
- W2913426552 cites W2009708711 @default.
- W2913426552 cites W2015749074 @default.
- W2913426552 cites W2030886008 @default.
- W2913426552 cites W2031896757 @default.
- W2913426552 cites W2058189433 @default.
- W2913426552 cites W2059511681 @default.
- W2913426552 cites W2060112995 @default.
- W2913426552 cites W2062685946 @default.
- W2913426552 cites W2080679139 @default.
- W2913426552 cites W2081861598 @default.
- W2913426552 cites W2082240576 @default.
- W2913426552 cites W2098538101 @default.
- W2913426552 cites W2099816991 @default.
- W2913426552 cites W2108301111 @default.
- W2913426552 cites W2118048521 @default.
- W2913426552 cites W2120669439 @default.
- W2913426552 cites W2127979111 @default.
- W2913426552 cites W2129531883 @default.
- W2913426552 cites W2138309709 @default.
- W2913426552 cites W2143841415 @default.
- W2913426552 cites W2148412534 @default.
- W2913426552 cites W2151950896 @default.
- W2913426552 cites W2158128575 @default.
- W2913426552 cites W2161015681 @default.
- W2913426552 cites W2164167147 @default.
- W2913426552 cites W2281891645 @default.
- W2913426552 cites W2290394775 @default.
- W2913426552 cites W2585218369 @default.
- W2913426552 cites W2586848609 @default.
- W2913426552 cites W2587913434 @default.
- W2913426552 cites W2602422862 @default.
- W2913426552 cites W2768468709 @default.
- W2913426552 cites W2964155733 @default.
- W2913426552 cites W3103263318 @default.
- W2913426552 cites W4211177544 @default.
- W2913426552 doi "https://doi.org/10.1016/j.jmp.2019.01.005" @default.
- W2913426552 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6374050" @default.
- W2913426552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30774151" @default.
- W2913426552 hasPublicationYear "2019" @default.
- W2913426552 type Work @default.
- W2913426552 sameAs 2913426552 @default.
- W2913426552 citedByCount "14" @default.
- W2913426552 countsByYear W29134265522017 @default.
- W2913426552 countsByYear W29134265522018 @default.
- W2913426552 countsByYear W29134265522019 @default.
- W2913426552 countsByYear W29134265522020 @default.
- W2913426552 countsByYear W29134265522021 @default.
- W2913426552 countsByYear W29134265522022 @default.
- W2913426552 countsByYear W29134265522023 @default.
- W2913426552 crossrefType "journal-article" @default.
- W2913426552 hasAuthorship W2913426552A5045402168 @default.
- W2913426552 hasAuthorship W2913426552A5058881122 @default.
- W2913426552 hasAuthorship W2913426552A5079561527 @default.
- W2913426552 hasAuthorship W2913426552A5091081681 @default.
- W2913426552 hasBestOaLocation W29134265522 @default.
- W2913426552 hasConcept C107673813 @default.
- W2913426552 hasConcept C11413529 @default.
- W2913426552 hasConcept C119857082 @default.
- W2913426552 hasConcept C142291917 @default.
- W2913426552 hasConcept C154945302 @default.
- W2913426552 hasConcept C207201462 @default.
- W2913426552 hasConcept C2776214188 @default.
- W2913426552 hasConcept C2779377595 @default.
- W2913426552 hasConcept C41008148 @default.
- W2913426552 hasConcept C95923904 @default.
- W2913426552 hasConceptScore W2913426552C107673813 @default.
- W2913426552 hasConceptScore W2913426552C11413529 @default.
- W2913426552 hasConceptScore W2913426552C119857082 @default.
- W2913426552 hasConceptScore W2913426552C142291917 @default.
- W2913426552 hasConceptScore W2913426552C154945302 @default.
- W2913426552 hasConceptScore W2913426552C207201462 @default.
- W2913426552 hasConceptScore W2913426552C2776214188 @default.
- W2913426552 hasConceptScore W2913426552C2779377595 @default.
- W2913426552 hasConceptScore W2913426552C41008148 @default.
- W2913426552 hasConceptScore W2913426552C95923904 @default.
- W2913426552 hasFunder F4320337350 @default.
- W2913426552 hasLocation W29134265521 @default.
- W2913426552 hasLocation W29134265522 @default.
- W2913426552 hasLocation W29134265523 @default.
- W2913426552 hasLocation W29134265524 @default.
- W2913426552 hasLocation W29134265525 @default.
- W2913426552 hasLocation W29134265526 @default.