Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913426705> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2913426705 abstract "This thesis develops a new method to detect delaminations in composite laminates using a combination of finite element method, artificial neural networks, and genetic algorithms. Next, this newly developed method is applied to successfully solve delamination detection problems. Delaminations in a composite laminate with various sizes and locations are considered in the present studies. The improved layerwise shear deformation theory is implemented into the finite element method and used to calculate responses of laminates with single and multiple delaminations. Mappings between the natural frequencies and delamination characteristics are first determined from the developed models. These data are then used to train artificial neural networks of multiplayer perceptron using back-propagation. These trained artificial neural networks are in turn used as an approximate tool to calculate the responses of the delaminated laminates and to feed the data to the delamination detection process. Two different approaches for handling the neural network models are applied in the work and are presented for comparison. The delamination detection problem is formulated as an optimization problem with mixed type design variables. A genetic algorithm, which is a guided probabilistic search technique based on the simulation of Darwin's principle of evolution and natural selection, is developed to solve this optimization problem. Single through-the-width delamination, single internal delamination, and multiple through-the-width delaminations are separately considered for detection study. At last, the application is extended to the most challenging problem, which is the detection of general delamination. Various factors affecting the detection process such as the finite element convergence factor and the laminate geometry factor are also examined. Case studies are made and the findings are summarized in detail in each chapter of the dissertation. It is found that the newly developed method successfully detects delaminations with remarkable accuracy for all four types of delamination problems. It is also found that this newly developed method successfully solves the inverse problems of single delamination, internal delamination, multiple delaminations, and the generalized delamination detection, none of which have been solved previously." @default.
- W2913426705 created "2019-02-21" @default.
- W2913426705 creator A5032254190 @default.
- W2913426705 date "2004-01-01" @default.
- W2913426705 modified "2023-09-26" @default.
- W2913426705 title "A method to detect single and multiple delamination problems using a combined neural network technique and genetic algorithm optimization" @default.
- W2913426705 hasPublicationYear "2004" @default.
- W2913426705 type Work @default.
- W2913426705 sameAs 2913426705 @default.
- W2913426705 citedByCount "0" @default.
- W2913426705 crossrefType "journal-article" @default.
- W2913426705 hasAuthorship W2913426705A5032254190 @default.
- W2913426705 hasConcept C11413529 @default.
- W2913426705 hasConcept C119857082 @default.
- W2913426705 hasConcept C127413603 @default.
- W2913426705 hasConcept C134342201 @default.
- W2913426705 hasConcept C135628077 @default.
- W2913426705 hasConcept C145922259 @default.
- W2913426705 hasConcept C151730666 @default.
- W2913426705 hasConcept C154945302 @default.
- W2913426705 hasConcept C175202392 @default.
- W2913426705 hasConcept C30239060 @default.
- W2913426705 hasConcept C41008148 @default.
- W2913426705 hasConcept C50644808 @default.
- W2913426705 hasConcept C58097730 @default.
- W2913426705 hasConcept C60908668 @default.
- W2913426705 hasConcept C66938386 @default.
- W2913426705 hasConcept C77928131 @default.
- W2913426705 hasConcept C86803240 @default.
- W2913426705 hasConcept C8880873 @default.
- W2913426705 hasConceptScore W2913426705C11413529 @default.
- W2913426705 hasConceptScore W2913426705C119857082 @default.
- W2913426705 hasConceptScore W2913426705C127413603 @default.
- W2913426705 hasConceptScore W2913426705C134342201 @default.
- W2913426705 hasConceptScore W2913426705C135628077 @default.
- W2913426705 hasConceptScore W2913426705C145922259 @default.
- W2913426705 hasConceptScore W2913426705C151730666 @default.
- W2913426705 hasConceptScore W2913426705C154945302 @default.
- W2913426705 hasConceptScore W2913426705C175202392 @default.
- W2913426705 hasConceptScore W2913426705C30239060 @default.
- W2913426705 hasConceptScore W2913426705C41008148 @default.
- W2913426705 hasConceptScore W2913426705C50644808 @default.
- W2913426705 hasConceptScore W2913426705C58097730 @default.
- W2913426705 hasConceptScore W2913426705C60908668 @default.
- W2913426705 hasConceptScore W2913426705C66938386 @default.
- W2913426705 hasConceptScore W2913426705C77928131 @default.
- W2913426705 hasConceptScore W2913426705C86803240 @default.
- W2913426705 hasConceptScore W2913426705C8880873 @default.
- W2913426705 hasLocation W29134267051 @default.
- W2913426705 hasOpenAccess W2913426705 @default.
- W2913426705 hasPrimaryLocation W29134267051 @default.
- W2913426705 hasRelatedWork W185877019 @default.
- W2913426705 hasRelatedWork W1968160321 @default.
- W2913426705 hasRelatedWork W1990611991 @default.
- W2913426705 hasRelatedWork W1991290039 @default.
- W2913426705 hasRelatedWork W2018366821 @default.
- W2913426705 hasRelatedWork W2049257734 @default.
- W2913426705 hasRelatedWork W2053343703 @default.
- W2913426705 hasRelatedWork W2092818619 @default.
- W2913426705 hasRelatedWork W2151842197 @default.
- W2913426705 hasRelatedWork W2169656707 @default.
- W2913426705 hasRelatedWork W2519404979 @default.
- W2913426705 hasRelatedWork W2904401907 @default.
- W2913426705 hasRelatedWork W2911197644 @default.
- W2913426705 hasRelatedWork W3044870912 @default.
- W2913426705 hasRelatedWork W3088148305 @default.
- W2913426705 hasRelatedWork W309822427 @default.
- W2913426705 hasRelatedWork W3195010849 @default.
- W2913426705 hasRelatedWork W3198229326 @default.
- W2913426705 hasRelatedWork W3201303319 @default.
- W2913426705 hasRelatedWork W767006878 @default.
- W2913426705 isParatext "false" @default.
- W2913426705 isRetracted "false" @default.
- W2913426705 magId "2913426705" @default.
- W2913426705 workType "article" @default.