Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913429021> ?p ?o ?g. }
- W2913429021 endingPage "846" @default.
- W2913429021 startingPage "816" @default.
- W2913429021 abstract "ABSTRACT Retailers are interested in understanding which price promotions are profitable and which are not. However, simultaneously estimating the promotion effects of a large number of products on retailer sales and profits is technically challenging for both researchers and practitioners. To address this challenge, this study proposes a Partially Profiled Least Absolute Shrinkage and Selection Operator (Partially Profiled LASSO) model, which can estimate ultra‐high‐dimensional regression relationships at a low computational cost and control for the endogeneity of promotion depth. The model can flexibly incorporate the time‐varying promotion effects and the cross‐over effects among the promotions of different products. We conduct an empirical study using data provided by a large retailer over a 5‐month period. Our model efficiently identifies products with promotion effects and the promotion effects are significantly associated with certain promotion, product, and category characteristics. The results also show that our model with cross‐over effects outperforms the benchmark models that are widely used to handle the high‐dimensional predictor matrix (e.g., the standard LASSO and principal component regression methods). This article contributes to the related literature on price promotion and marketing analytics in data‐rich environments, and provides implications for retailers to make more informed promotion strategies." @default.
- W2913429021 created "2019-02-21" @default.
- W2913429021 creator A5017020260 @default.
- W2913429021 creator A5038863732 @default.
- W2913429021 creator A5043477090 @default.
- W2913429021 creator A5044914203 @default.
- W2913429021 creator A5048394694 @default.
- W2913429021 date "2019-01-25" @default.
- W2913429021 modified "2023-10-15" @default.
- W2913429021 title "Estimating Promotion Effects Using Big Data: A Partially Profiled LASSO Model with Endogeneity Correction*" @default.
- W2913429021 cites W1507344949 @default.
- W2913429021 cites W1814560945 @default.
- W2913429021 cites W1859880334 @default.
- W2913429021 cites W1875061881 @default.
- W2913429021 cites W1976362794 @default.
- W2913429021 cites W1977387735 @default.
- W2913429021 cites W1983440286 @default.
- W2913429021 cites W1995691260 @default.
- W2913429021 cites W2003829603 @default.
- W2913429021 cites W2015954563 @default.
- W2913429021 cites W2025977797 @default.
- W2913429021 cites W2033434148 @default.
- W2913429021 cites W2038601479 @default.
- W2913429021 cites W2044230810 @default.
- W2913429021 cites W2046994974 @default.
- W2913429021 cites W2053061982 @default.
- W2913429021 cites W2063978378 @default.
- W2913429021 cites W2071792947 @default.
- W2913429021 cites W2075887421 @default.
- W2913429021 cites W2084568082 @default.
- W2913429021 cites W2087040302 @default.
- W2913429021 cites W2103412488 @default.
- W2913429021 cites W2110980416 @default.
- W2913429021 cites W2114062456 @default.
- W2913429021 cites W2134807626 @default.
- W2913429021 cites W2136003795 @default.
- W2913429021 cites W2153227754 @default.
- W2913429021 cites W2154701516 @default.
- W2913429021 cites W2157595931 @default.
- W2913429021 cites W2159613688 @default.
- W2913429021 cites W2160845324 @default.
- W2913429021 cites W2161903420 @default.
- W2913429021 cites W2163407464 @default.
- W2913429021 cites W2168175751 @default.
- W2913429021 cites W2236196440 @default.
- W2913429021 cites W2274432261 @default.
- W2913429021 cites W2286211937 @default.
- W2913429021 cites W2316299968 @default.
- W2913429021 cites W2396526128 @default.
- W2913429021 cites W2911964244 @default.
- W2913429021 cites W303834209 @default.
- W2913429021 cites W3121452939 @default.
- W2913429021 cites W3122008423 @default.
- W2913429021 cites W3122012278 @default.
- W2913429021 cites W3122132396 @default.
- W2913429021 cites W4238344355 @default.
- W2913429021 cites W4243372546 @default.
- W2913429021 cites W4246048519 @default.
- W2913429021 cites W4247187208 @default.
- W2913429021 cites W4254394705 @default.
- W2913429021 cites W4254434337 @default.
- W2913429021 cites W4362230840 @default.
- W2913429021 doi "https://doi.org/10.1111/deci.12354" @default.
- W2913429021 hasPublicationYear "2019" @default.
- W2913429021 type Work @default.
- W2913429021 sameAs 2913429021 @default.
- W2913429021 citedByCount "4" @default.
- W2913429021 countsByYear W29134290212020 @default.
- W2913429021 countsByYear W29134290212022 @default.
- W2913429021 countsByYear W29134290212023 @default.
- W2913429021 crossrefType "journal-article" @default.
- W2913429021 hasAuthorship W2913429021A5017020260 @default.
- W2913429021 hasAuthorship W2913429021A5038863732 @default.
- W2913429021 hasAuthorship W2913429021A5043477090 @default.
- W2913429021 hasAuthorship W2913429021A5044914203 @default.
- W2913429021 hasAuthorship W2913429021A5048394694 @default.
- W2913429021 hasConcept C119857082 @default.
- W2913429021 hasConcept C13280743 @default.
- W2913429021 hasConcept C136764020 @default.
- W2913429021 hasConcept C144133560 @default.
- W2913429021 hasConcept C149782125 @default.
- W2913429021 hasConcept C152877465 @default.
- W2913429021 hasConcept C162324750 @default.
- W2913429021 hasConcept C162853370 @default.
- W2913429021 hasConcept C17744445 @default.
- W2913429021 hasConcept C185798385 @default.
- W2913429021 hasConcept C199539241 @default.
- W2913429021 hasConcept C205649164 @default.
- W2913429021 hasConcept C2524010 @default.
- W2913429021 hasConcept C33923547 @default.
- W2913429021 hasConcept C37616216 @default.
- W2913429021 hasConcept C41008148 @default.
- W2913429021 hasConcept C610760 @default.
- W2913429021 hasConcept C90673727 @default.
- W2913429021 hasConcept C94625758 @default.
- W2913429021 hasConcept C98147612 @default.
- W2913429021 hasConceptScore W2913429021C119857082 @default.
- W2913429021 hasConceptScore W2913429021C13280743 @default.