Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913447624> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2913447624 endingPage "529" @default.
- W2913447624 startingPage "517" @default.
- W2913447624 abstract "Research Article| February 13, 2019 An Investigation of Rapid Earthquake Characterization Using Single‐Station Waveforms and a Convolutional Neural Network Anthony Lomax; Anthony Lomax aALomax Scientific, 320 Chemin des Indes, 06370 Mouans‐Sartoux, France, anthony@alomax.net Search for other works by this author on: GSW Google Scholar Alberto Michelini; Alberto Michelini bIstituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata, 605, 00143 Rome, Italy, alberto.michelini@ingv.it, djozinovi@gmail.com Search for other works by this author on: GSW Google Scholar Dario Jozinović Dario Jozinović bIstituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata, 605, 00143 Rome, Italy, alberto.michelini@ingv.it, djozinovi@gmail.com Search for other works by this author on: GSW Google Scholar Seismological Research Letters (2019) 90 (2A): 517–529. https://doi.org/10.1785/0220180311 Article history first online: 13 Feb 2019 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Anthony Lomax, Alberto Michelini, Dario Jozinović; An Investigation of Rapid Earthquake Characterization Using Single‐Station Waveforms and a Convolutional Neural Network. Seismological Research Letters 2019;; 90 (2A): 517–529. doi: https://doi.org/10.1785/0220180311 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietySeismological Research Letters Search Advanced Search ABSTRACT Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require rapid characterization of an earthquake’s location, size, and other parameters, usually provided by real‐time seismogram analysis using established, rule‐based, seismological procedures. Powerful, new machine learning (ML) tools analyze basic data using little or no rule‐based knowledge, and an ML deep convolutional neural network (CNN) can operate directly on seismogram waveforms with little preprocessing and without feature extraction. How a CNN will perform for rapid automated earthquake detection and characterization using short single‐station waveforms is an issue of fundamental importance for earthquake monitoring.For an initial investigation of this issue, we adapt an existing CNN for local earthquake detection and epicentral classification using single‐station waveforms (Perol et al., 2018), to form a new CNN, ConvNetQuake_INGV, to characterize earthquakes at any distance (local to far‐teleseismic). ConvNetQuake_INGV operates directly on 50‐s three‐component broadband single‐station waveforms to detect seismic events and obtain binned probabilistic estimates of the distance, azimuth, depth, and magnitude of the event. The best performance of ConvNetQuake_INGV is obtained using a last convolutional layer with fewer nodes than the number of output classifications, a form of information bottleneck.We show that ConvNetQuake_INGV detects very well (accuracy 87%) and characterizes moderately well earthquakes over a broad range of distances and magnitudes, and we analyze outlier results and indications of overfitting of the CNN training data. We find weak evidence that the CNN is performing more than high‐dimensional regression and pattern recognition, and is generalizing information or learning, to provide useful characterization of new events not represented in the training data. We expect that real‐time ML procedures such as ConvNetQuake_INGV, perhaps incorporating rule‐based knowledge, will ultimately prove valuable for rapid detection and characterization of earthquakes for earthquake response and tsunami early warning. You do not have access to this content, please speak to your institutional administrator if you feel you should have access." @default.
- W2913447624 created "2019-02-21" @default.
- W2913447624 creator A5017607013 @default.
- W2913447624 creator A5048933454 @default.
- W2913447624 creator A5088471936 @default.
- W2913447624 date "2019-02-13" @default.
- W2913447624 modified "2023-10-16" @default.
- W2913447624 title "An Investigation of Rapid Earthquake Characterization Using Single‐Station Waveforms and a Convolutional Neural Network" @default.
- W2913447624 cites W134332142 @default.
- W2913447624 cites W1563219554 @default.
- W2913447624 cites W189663681 @default.
- W2913447624 cites W2000815992 @default.
- W2913447624 cites W2058669575 @default.
- W2913447624 cites W2069692647 @default.
- W2913447624 cites W2086820490 @default.
- W2913447624 cites W2088047272 @default.
- W2913447624 cites W2098941059 @default.
- W2913447624 cites W2102919512 @default.
- W2913447624 cites W2112393517 @default.
- W2913447624 cites W2151238436 @default.
- W2913447624 cites W2222227831 @default.
- W2913447624 cites W2274592856 @default.
- W2913447624 cites W2762410434 @default.
- W2913447624 cites W2798828763 @default.
- W2913447624 cites W2799565130 @default.
- W2913447624 cites W2903104367 @default.
- W2913447624 cites W2919115771 @default.
- W2913447624 cites W2964184826 @default.
- W2913447624 cites W3124928229 @default.
- W2913447624 doi "https://doi.org/10.1785/0220180311" @default.
- W2913447624 hasPublicationYear "2019" @default.
- W2913447624 type Work @default.
- W2913447624 sameAs 2913447624 @default.
- W2913447624 citedByCount "81" @default.
- W2913447624 countsByYear W29134476242019 @default.
- W2913447624 countsByYear W29134476242020 @default.
- W2913447624 countsByYear W29134476242021 @default.
- W2913447624 countsByYear W29134476242022 @default.
- W2913447624 countsByYear W29134476242023 @default.
- W2913447624 crossrefType "journal-article" @default.
- W2913447624 hasAuthorship W2913447624A5017607013 @default.
- W2913447624 hasAuthorship W2913447624A5048933454 @default.
- W2913447624 hasAuthorship W2913447624A5088471936 @default.
- W2913447624 hasConcept C154945302 @default.
- W2913447624 hasConcept C161191863 @default.
- W2913447624 hasConcept C199360897 @default.
- W2913447624 hasConcept C23123220 @default.
- W2913447624 hasConcept C2778447006 @default.
- W2913447624 hasConcept C2778805511 @default.
- W2913447624 hasConcept C41008148 @default.
- W2913447624 hasConcept C81363708 @default.
- W2913447624 hasConceptScore W2913447624C154945302 @default.
- W2913447624 hasConceptScore W2913447624C161191863 @default.
- W2913447624 hasConceptScore W2913447624C199360897 @default.
- W2913447624 hasConceptScore W2913447624C23123220 @default.
- W2913447624 hasConceptScore W2913447624C2778447006 @default.
- W2913447624 hasConceptScore W2913447624C2778805511 @default.
- W2913447624 hasConceptScore W2913447624C41008148 @default.
- W2913447624 hasConceptScore W2913447624C81363708 @default.
- W2913447624 hasIssue "2A" @default.
- W2913447624 hasLocation W29134476241 @default.
- W2913447624 hasOpenAccess W2913447624 @default.
- W2913447624 hasPrimaryLocation W29134476241 @default.
- W2913447624 hasRelatedWork W1504514227 @default.
- W2913447624 hasRelatedWork W2056060060 @default.
- W2913447624 hasRelatedWork W2076882245 @default.
- W2913447624 hasRelatedWork W2175435306 @default.
- W2913447624 hasRelatedWork W220677501 @default.
- W2913447624 hasRelatedWork W2981902742 @default.
- W2913447624 hasRelatedWork W3175319091 @default.
- W2913447624 hasRelatedWork W4207071872 @default.
- W2913447624 hasRelatedWork W4283720006 @default.
- W2913447624 hasRelatedWork W4360922125 @default.
- W2913447624 hasVolume "90" @default.
- W2913447624 isParatext "false" @default.
- W2913447624 isRetracted "false" @default.
- W2913447624 magId "2913447624" @default.
- W2913447624 workType "article" @default.