Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913497771> ?p ?o ?g. }
- W2913497771 endingPage "157" @default.
- W2913497771 startingPage "147" @default.
- W2913497771 abstract "In the world scenario, concerns with security and privacy regarding computer networks are always increasing. Computer security has become a necessity due to the proliferation of information technologies in everyday life. The increase in the number of Internet accesses and the emergence of new technologies, such as the Internet of Things (IoT paradigm, are accompanied by new and modern attempts to invade computer systems and networks. Companies are increasingly investing in studies to optimize the detection of these attacks. Institutions are selecting intelligent techniques to test and verify by comparing the best rates of accuracy. This research, therefore, focuses on rigorous state-of-the-art literature on Machine Learning Techniques applied in Internet-of-Things and Intrusion Detection for computer network security. The work aims, therefore, recent and in-depth research of relevant works that deal with several intelligent techniques and their applied intrusion detection architectures in computer networks with emphasis on the Internet of Things and machine learning. More than 95 works on the subject were surveyed, spanning across different themes related to security issues in IoT environments." @default.
- W2913497771 created "2019-02-21" @default.
- W2913497771 creator A5000302987 @default.
- W2913497771 creator A5003275797 @default.
- W2913497771 creator A5045093520 @default.
- W2913497771 creator A5085941342 @default.
- W2913497771 creator A5091482780 @default.
- W2913497771 date "2019-03-01" @default.
- W2913497771 modified "2023-10-16" @default.
- W2913497771 title "Internet of Things: A survey on machine learning-based intrusion detection approaches" @default.
- W2913497771 cites W1196375415 @default.
- W2913497771 cites W1966809779 @default.
- W2913497771 cites W1967376128 @default.
- W2913497771 cites W1971673042 @default.
- W2913497771 cites W1996799478 @default.
- W2913497771 cites W2013504000 @default.
- W2913497771 cites W2096411924 @default.
- W2913497771 cites W2134295053 @default.
- W2913497771 cites W2278186031 @default.
- W2913497771 cites W2294237039 @default.
- W2913497771 cites W2315925192 @default.
- W2913497771 cites W2341871820 @default.
- W2913497771 cites W2345242196 @default.
- W2913497771 cites W2346714907 @default.
- W2913497771 cites W2390416525 @default.
- W2913497771 cites W2395371785 @default.
- W2913497771 cites W2465328328 @default.
- W2913497771 cites W2510013200 @default.
- W2913497771 cites W2512144135 @default.
- W2913497771 cites W2518735427 @default.
- W2913497771 cites W2527999453 @default.
- W2913497771 cites W2549170597 @default.
- W2913497771 cites W2552493337 @default.
- W2913497771 cites W2555566684 @default.
- W2913497771 cites W2558393669 @default.
- W2913497771 cites W2559341072 @default.
- W2913497771 cites W2570160403 @default.
- W2913497771 cites W2579916179 @default.
- W2913497771 cites W2580334929 @default.
- W2913497771 cites W2582704262 @default.
- W2913497771 cites W2588209769 @default.
- W2913497771 cites W2590373591 @default.
- W2913497771 cites W2597344165 @default.
- W2913497771 cites W2604813584 @default.
- W2913497771 cites W2605600849 @default.
- W2913497771 cites W2605955588 @default.
- W2913497771 cites W2606486016 @default.
- W2913497771 cites W2616982187 @default.
- W2913497771 cites W2623163150 @default.
- W2913497771 cites W2627093154 @default.
- W2913497771 cites W2737879662 @default.
- W2913497771 cites W2749908420 @default.
- W2913497771 cites W2751399725 @default.
- W2913497771 cites W2752291283 @default.
- W2913497771 cites W2753055686 @default.
- W2913497771 cites W2763912702 @default.
- W2913497771 cites W2765275233 @default.
- W2913497771 cites W2766113891 @default.
- W2913497771 cites W2784241349 @default.
- W2913497771 cites W2784792583 @default.
- W2913497771 cites W2786070938 @default.
- W2913497771 cites W2787467369 @default.
- W2913497771 cites W2790360011 @default.
- W2913497771 cites W2794361067 @default.
- W2913497771 cites W2801232162 @default.
- W2913497771 cites W2892485325 @default.
- W2913497771 cites W4213165937 @default.
- W2913497771 cites W4248916828 @default.
- W2913497771 cites W4250320908 @default.
- W2913497771 cites W877640216 @default.
- W2913497771 doi "https://doi.org/10.1016/j.comnet.2019.01.023" @default.
- W2913497771 hasPublicationYear "2019" @default.
- W2913497771 type Work @default.
- W2913497771 sameAs 2913497771 @default.
- W2913497771 citedByCount "279" @default.
- W2913497771 countsByYear W29134977712019 @default.
- W2913497771 countsByYear W29134977712020 @default.
- W2913497771 countsByYear W29134977712021 @default.
- W2913497771 countsByYear W29134977712022 @default.
- W2913497771 countsByYear W29134977712023 @default.
- W2913497771 crossrefType "journal-article" @default.
- W2913497771 hasAuthorship W2913497771A5000302987 @default.
- W2913497771 hasAuthorship W2913497771A5003275797 @default.
- W2913497771 hasAuthorship W2913497771A5045093520 @default.
- W2913497771 hasAuthorship W2913497771A5085941342 @default.
- W2913497771 hasAuthorship W2913497771A5091482780 @default.
- W2913497771 hasConcept C110875604 @default.
- W2913497771 hasConcept C11413529 @default.
- W2913497771 hasConcept C119857082 @default.
- W2913497771 hasConcept C136764020 @default.
- W2913497771 hasConcept C154945302 @default.
- W2913497771 hasConcept C182590292 @default.
- W2913497771 hasConcept C22111027 @default.
- W2913497771 hasConcept C29983905 @default.
- W2913497771 hasConcept C35525427 @default.
- W2913497771 hasConcept C38652104 @default.
- W2913497771 hasConcept C41008148 @default.
- W2913497771 hasConcept C48103436 @default.