Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913504910> ?p ?o ?g. }
- W2913504910 endingPage "393" @default.
- W2913504910 startingPage "383" @default.
- W2913504910 abstract "In this paper, we consider dense volumetric modeling of moving samples such as body parts. Most dense modeling methods consider samples observed with a moving X-ray device and cannot easily handle moving samples. We propose instead a novel method to observe shape motion from a fixed X-ray device and to build dense in-depth attenuation information. This yields a low-cost, low-dose 3-D imaging solution, taking benefit of equipment widely available in clinical environments. Our first innovation is to combine a video-based surface motion capture system with a single low-cost/low-dose fixed planar X-ray device, in order to retrieve the sample motion and attenuation information with minimal radiation exposure. Our second innovation is to rely on Bayesian inference to solve for a dense attenuation volume given planar radioscopic images of a moving sample. This approach enables multiple sources of noise to be considered and takes advantage of very limited prior information to solve an otherwise ill-posed problem. Results show that the proposed strategy is able to reconstruct dense volumetric attenuation models from a very limited number of radiographic views over time on synthetic and in-situ data." @default.
- W2913504910 created "2019-02-21" @default.
- W2913504910 creator A5029027854 @default.
- W2913504910 creator A5087534898 @default.
- W2913504910 date "2019-02-01" @default.
- W2913504910 modified "2023-10-15" @default.
- W2913504910 title "CBCT of a Moving Sample From X-Rays and Multiple Videos" @default.
- W2913504910 cites W1661599569 @default.
- W2913504910 cites W1676212501 @default.
- W2913504910 cites W1983483728 @default.
- W2913504910 cites W1987507268 @default.
- W2913504910 cites W1988483124 @default.
- W2913504910 cites W2010981316 @default.
- W2913504910 cites W2022948474 @default.
- W2913504910 cites W2031497087 @default.
- W2913504910 cites W2053529190 @default.
- W2913504910 cites W2058603116 @default.
- W2913504910 cites W2079613247 @default.
- W2913504910 cites W2084664425 @default.
- W2913504910 cites W2097528311 @default.
- W2913504910 cites W2097746424 @default.
- W2913504910 cites W2112924835 @default.
- W2913504910 cites W2114419957 @default.
- W2913504910 cites W2120578258 @default.
- W2913504910 cites W2120720974 @default.
- W2913504910 cites W2141991262 @default.
- W2913504910 cites W2147542748 @default.
- W2913504910 cites W2150066425 @default.
- W2913504910 cites W2154504070 @default.
- W2913504910 cites W2157812230 @default.
- W2913504910 cites W2159378237 @default.
- W2913504910 cites W2159904677 @default.
- W2913504910 cites W2167667767 @default.
- W2913504910 cites W2168530812 @default.
- W2913504910 cites W2169734502 @default.
- W2913504910 cites W2257174863 @default.
- W2913504910 cites W2259607048 @default.
- W2913504910 cites W2330168251 @default.
- W2913504910 cites W2340739692 @default.
- W2913504910 cites W2517927793 @default.
- W2913504910 cites W2589296748 @default.
- W2913504910 cites W2601859932 @default.
- W2913504910 cites W2755882332 @default.
- W2913504910 cites W39112330 @default.
- W2913504910 doi "https://doi.org/10.1109/tmi.2018.2865228" @default.
- W2913504910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30106718" @default.
- W2913504910 hasPublicationYear "2019" @default.
- W2913504910 type Work @default.
- W2913504910 sameAs 2913504910 @default.
- W2913504910 citedByCount "2" @default.
- W2913504910 countsByYear W29135049102020 @default.
- W2913504910 countsByYear W29135049102022 @default.
- W2913504910 crossrefType "journal-article" @default.
- W2913504910 hasAuthorship W2913504910A5029027854 @default.
- W2913504910 hasAuthorship W2913504910A5087534898 @default.
- W2913504910 hasBestOaLocation W29135049102 @default.
- W2913504910 hasConcept C107673813 @default.
- W2913504910 hasConcept C11413529 @default.
- W2913504910 hasConcept C115961682 @default.
- W2913504910 hasConcept C120665830 @default.
- W2913504910 hasConcept C121332964 @default.
- W2913504910 hasConcept C121684516 @default.
- W2913504910 hasConcept C134786449 @default.
- W2913504910 hasConcept C141379421 @default.
- W2913504910 hasConcept C154945302 @default.
- W2913504910 hasConcept C160234255 @default.
- W2913504910 hasConcept C184652730 @default.
- W2913504910 hasConcept C198531522 @default.
- W2913504910 hasConcept C2776214188 @default.
- W2913504910 hasConcept C31972630 @default.
- W2913504910 hasConcept C41008148 @default.
- W2913504910 hasConcept C97355855 @default.
- W2913504910 hasConcept C99498987 @default.
- W2913504910 hasConceptScore W2913504910C107673813 @default.
- W2913504910 hasConceptScore W2913504910C11413529 @default.
- W2913504910 hasConceptScore W2913504910C115961682 @default.
- W2913504910 hasConceptScore W2913504910C120665830 @default.
- W2913504910 hasConceptScore W2913504910C121332964 @default.
- W2913504910 hasConceptScore W2913504910C121684516 @default.
- W2913504910 hasConceptScore W2913504910C134786449 @default.
- W2913504910 hasConceptScore W2913504910C141379421 @default.
- W2913504910 hasConceptScore W2913504910C154945302 @default.
- W2913504910 hasConceptScore W2913504910C160234255 @default.
- W2913504910 hasConceptScore W2913504910C184652730 @default.
- W2913504910 hasConceptScore W2913504910C198531522 @default.
- W2913504910 hasConceptScore W2913504910C2776214188 @default.
- W2913504910 hasConceptScore W2913504910C31972630 @default.
- W2913504910 hasConceptScore W2913504910C41008148 @default.
- W2913504910 hasConceptScore W2913504910C97355855 @default.
- W2913504910 hasConceptScore W2913504910C99498987 @default.
- W2913504910 hasFunder F4320320883 @default.
- W2913504910 hasIssue "2" @default.
- W2913504910 hasLocation W29135049101 @default.
- W2913504910 hasLocation W29135049102 @default.
- W2913504910 hasLocation W29135049103 @default.
- W2913504910 hasLocation W29135049104 @default.
- W2913504910 hasOpenAccess W2913504910 @default.
- W2913504910 hasPrimaryLocation W29135049101 @default.