Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913510366> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2913510366 abstract "Accurate cardiac left ventricle (LV) quantification is among the most clinically important and most frequently demanded tasks for identification and diagnosis of cardiac diseases and is of great interest in the research community of medical image analysis. However, it is still a task of great challenge due to the high variability of cardiac structure across subjects and the complexity of temporal dynamics of cardiac sequences. Full quantification of cardiac LV includes simultaneously quantifying, for every frame in the whole cardiac cycle, multiple types of cardiac indices, such as cavity and myocardium areas, regional wall thicknesses, LV dimension and cardiac phase. Accurate quantification of these indices will support comprehensive global and regional cardiac function assessment. In this paper, we propose a newly designed multitask learning network which combines the segmentation task and the cardiac indices quantification task. It comprises a segmentation network based on the U-net for image representation, and then followed by a simple convolutional neural network for feature extraction of cardiac indices, two parallel recurrent neural network models are then added for temporal dynamic modeling. Then we use multitask learning to capture the existing correlations among different tasks. Experiments of 5-fold validation results show that the proposed framework achieves high accurate prediction, with average mean absolute error of 173 mm(^{2}), 2.44 mm, 1.37 mm for areas, dimensions, RWT and phase error rate 7.8%." @default.
- W2913510366 created "2019-02-21" @default.
- W2913510366 creator A5006910957 @default.
- W2913510366 creator A5070173803 @default.
- W2913510366 creator A5074472751 @default.
- W2913510366 creator A5083364618 @default.
- W2913510366 date "2019-01-01" @default.
- W2913510366 modified "2023-09-23" @default.
- W2913510366 title "Automated Full Quantification of Left Ventricle with Deep Neural Networks" @default.
- W2913510366 cites W1038736503 @default.
- W2913510366 cites W1901129140 @default.
- W2913510366 cites W1987512289 @default.
- W2913510366 cites W2122126162 @default.
- W2913510366 cites W2148516227 @default.
- W2913510366 cites W2149309532 @default.
- W2913510366 cites W2295452827 @default.
- W2913510366 cites W2404602184 @default.
- W2913510366 cites W2559597482 @default.
- W2913510366 cites W2592939477 @default.
- W2913510366 cites W2618456149 @default.
- W2913510366 cites W2618523870 @default.
- W2913510366 cites W2621477274 @default.
- W2913510366 cites W2757633676 @default.
- W2913510366 cites W2962807789 @default.
- W2913510366 cites W2963446712 @default.
- W2913510366 doi "https://doi.org/10.1007/978-3-030-12029-0_44" @default.
- W2913510366 hasPublicationYear "2019" @default.
- W2913510366 type Work @default.
- W2913510366 sameAs 2913510366 @default.
- W2913510366 citedByCount "1" @default.
- W2913510366 countsByYear W29135103662020 @default.
- W2913510366 crossrefType "book-chapter" @default.
- W2913510366 hasAuthorship W2913510366A5006910957 @default.
- W2913510366 hasAuthorship W2913510366A5070173803 @default.
- W2913510366 hasAuthorship W2913510366A5074472751 @default.
- W2913510366 hasAuthorship W2913510366A5083364618 @default.
- W2913510366 hasConcept C108583219 @default.
- W2913510366 hasConcept C111566952 @default.
- W2913510366 hasConcept C153180895 @default.
- W2913510366 hasConcept C154945302 @default.
- W2913510366 hasConcept C162324750 @default.
- W2913510366 hasConcept C164705383 @default.
- W2913510366 hasConcept C187736073 @default.
- W2913510366 hasConcept C2776127602 @default.
- W2913510366 hasConcept C2778198053 @default.
- W2913510366 hasConcept C2778921608 @default.
- W2913510366 hasConcept C2780451532 @default.
- W2913510366 hasConcept C41008148 @default.
- W2913510366 hasConcept C50644808 @default.
- W2913510366 hasConcept C71924100 @default.
- W2913510366 hasConcept C81363708 @default.
- W2913510366 hasConcept C89600930 @default.
- W2913510366 hasConceptScore W2913510366C108583219 @default.
- W2913510366 hasConceptScore W2913510366C111566952 @default.
- W2913510366 hasConceptScore W2913510366C153180895 @default.
- W2913510366 hasConceptScore W2913510366C154945302 @default.
- W2913510366 hasConceptScore W2913510366C162324750 @default.
- W2913510366 hasConceptScore W2913510366C164705383 @default.
- W2913510366 hasConceptScore W2913510366C187736073 @default.
- W2913510366 hasConceptScore W2913510366C2776127602 @default.
- W2913510366 hasConceptScore W2913510366C2778198053 @default.
- W2913510366 hasConceptScore W2913510366C2778921608 @default.
- W2913510366 hasConceptScore W2913510366C2780451532 @default.
- W2913510366 hasConceptScore W2913510366C41008148 @default.
- W2913510366 hasConceptScore W2913510366C50644808 @default.
- W2913510366 hasConceptScore W2913510366C71924100 @default.
- W2913510366 hasConceptScore W2913510366C81363708 @default.
- W2913510366 hasConceptScore W2913510366C89600930 @default.
- W2913510366 hasLocation W29135103661 @default.
- W2913510366 hasOpenAccess W2913510366 @default.
- W2913510366 hasPrimaryLocation W29135103661 @default.
- W2913510366 hasRelatedWork W2584721867 @default.
- W2913510366 hasRelatedWork W2606576226 @default.
- W2913510366 hasRelatedWork W2617063304 @default.
- W2913510366 hasRelatedWork W2618456149 @default.
- W2913510366 hasRelatedWork W2893406581 @default.
- W2913510366 hasRelatedWork W2899685551 @default.
- W2913510366 hasRelatedWork W2904746676 @default.
- W2913510366 hasRelatedWork W2912366236 @default.
- W2913510366 hasRelatedWork W2912684384 @default.
- W2913510366 hasRelatedWork W2921182543 @default.
- W2913510366 hasRelatedWork W2931569196 @default.
- W2913510366 hasRelatedWork W2933364549 @default.
- W2913510366 hasRelatedWork W2952298906 @default.
- W2913510366 hasRelatedWork W2979912876 @default.
- W2913510366 hasRelatedWork W3000082825 @default.
- W2913510366 hasRelatedWork W3001648116 @default.
- W2913510366 hasRelatedWork W3011573465 @default.
- W2913510366 hasRelatedWork W3039636409 @default.
- W2913510366 hasRelatedWork W3104785286 @default.
- W2913510366 hasRelatedWork W3152066958 @default.
- W2913510366 isParatext "false" @default.
- W2913510366 isRetracted "false" @default.
- W2913510366 magId "2913510366" @default.
- W2913510366 workType "book-chapter" @default.