Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913512232> ?p ?o ?g. }
- W2913512232 endingPage "1126" @default.
- W2913512232 startingPage "1126" @default.
- W2913512232 abstract "We report parallel-trained deep neural networks for automated endoscopic OCT image segmentation feasible even with a limited training data set. These U-Net-based deep neural networks were trained using a modified dice loss function and manual segmentations of ultrahigh-resolution cross-sectional images collected by an 800 nm OCT endoscopic system. The method was tested on in vivo guinea pig esophagus images. Results showed its robust layer segmentation capability with a boundary error of 1.4 µm insensitive to lay topology disorders. To further illustrate its clinical potential, the method was applied to differentiating in vivo OCT esophagus images from an eosinophilic esophagitis (EOE) model and its control group, and the results clearly demonstrated quantitative changes in the top esophageal layers' thickness in the EOE model." @default.
- W2913512232 created "2019-02-21" @default.
- W2913512232 creator A5008866071 @default.
- W2913512232 creator A5014330564 @default.
- W2913512232 creator A5017895028 @default.
- W2913512232 creator A5023371809 @default.
- W2913512232 creator A5024597682 @default.
- W2913512232 creator A5029025387 @default.
- W2913512232 creator A5036623577 @default.
- W2913512232 creator A5074802964 @default.
- W2913512232 creator A5077533618 @default.
- W2913512232 creator A5080984324 @default.
- W2913512232 date "2019-02-07" @default.
- W2913512232 modified "2023-10-16" @default.
- W2913512232 title "Parallel deep neural networks for endoscopic OCT image segmentation" @default.
- W2913512232 cites W1901129140 @default.
- W2913512232 cites W1987382181 @default.
- W2913512232 cites W1989721533 @default.
- W2913512232 cites W2006073837 @default.
- W2913512232 cites W2011237852 @default.
- W2913512232 cites W2013250751 @default.
- W2913512232 cites W2045186954 @default.
- W2913512232 cites W2055834582 @default.
- W2913512232 cites W2061813627 @default.
- W2913512232 cites W2074598933 @default.
- W2913512232 cites W2075557288 @default.
- W2913512232 cites W2082677554 @default.
- W2913512232 cites W2085202667 @default.
- W2913512232 cites W2096063647 @default.
- W2913512232 cites W2105420127 @default.
- W2913512232 cites W2108370292 @default.
- W2913512232 cites W2111406701 @default.
- W2913512232 cites W2115357996 @default.
- W2913512232 cites W2128191056 @default.
- W2913512232 cites W2132423323 @default.
- W2913512232 cites W2212993436 @default.
- W2913512232 cites W2227097924 @default.
- W2913512232 cites W2253429366 @default.
- W2913512232 cites W2581493794 @default.
- W2913512232 cites W2592517646 @default.
- W2913512232 cites W2592929672 @default.
- W2913512232 cites W2604963436 @default.
- W2913512232 cites W2606534623 @default.
- W2913512232 cites W2608854843 @default.
- W2913512232 cites W2608968385 @default.
- W2913512232 cites W2618530766 @default.
- W2913512232 cites W2625039771 @default.
- W2913512232 cites W2734349601 @default.
- W2913512232 cites W2756145209 @default.
- W2913512232 cites W2769757464 @default.
- W2913512232 cites W2802828172 @default.
- W2913512232 cites W2808330913 @default.
- W2913512232 cites W2888623473 @default.
- W2913512232 cites W2888905826 @default.
- W2913512232 cites W2889143701 @default.
- W2913512232 cites W2898575988 @default.
- W2913512232 cites W2963251008 @default.
- W2913512232 doi "https://doi.org/10.1364/boe.10.001126" @default.
- W2913512232 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6420296" @default.
- W2913512232 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30891334" @default.
- W2913512232 hasPublicationYear "2019" @default.
- W2913512232 type Work @default.
- W2913512232 sameAs 2913512232 @default.
- W2913512232 citedByCount "29" @default.
- W2913512232 countsByYear W29135122322019 @default.
- W2913512232 countsByYear W29135122322020 @default.
- W2913512232 countsByYear W29135122322021 @default.
- W2913512232 countsByYear W29135122322022 @default.
- W2913512232 countsByYear W29135122322023 @default.
- W2913512232 crossrefType "journal-article" @default.
- W2913512232 hasAuthorship W2913512232A5008866071 @default.
- W2913512232 hasAuthorship W2913512232A5014330564 @default.
- W2913512232 hasAuthorship W2913512232A5017895028 @default.
- W2913512232 hasAuthorship W2913512232A5023371809 @default.
- W2913512232 hasAuthorship W2913512232A5024597682 @default.
- W2913512232 hasAuthorship W2913512232A5029025387 @default.
- W2913512232 hasAuthorship W2913512232A5036623577 @default.
- W2913512232 hasAuthorship W2913512232A5074802964 @default.
- W2913512232 hasAuthorship W2913512232A5077533618 @default.
- W2913512232 hasAuthorship W2913512232A5080984324 @default.
- W2913512232 hasBestOaLocation W29135122321 @default.
- W2913512232 hasConcept C105702510 @default.
- W2913512232 hasConcept C108583219 @default.
- W2913512232 hasConcept C124504099 @default.
- W2913512232 hasConcept C126838900 @default.
- W2913512232 hasConcept C142724271 @default.
- W2913512232 hasConcept C153180895 @default.
- W2913512232 hasConcept C154945302 @default.
- W2913512232 hasConcept C2777819096 @default.
- W2913512232 hasConcept C2778818243 @default.
- W2913512232 hasConcept C2779134260 @default.
- W2913512232 hasConcept C2781065132 @default.
- W2913512232 hasConcept C31972630 @default.
- W2913512232 hasConcept C41008148 @default.
- W2913512232 hasConcept C50644808 @default.
- W2913512232 hasConcept C58489278 @default.
- W2913512232 hasConcept C71924100 @default.
- W2913512232 hasConcept C81363708 @default.