Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913559493> ?p ?o ?g. }
- W2913559493 endingPage "275" @default.
- W2913559493 startingPage "261" @default.
- W2913559493 abstract "Abstract Ultrasound (US) has become one of the most commonly performed imaging modalities in clinical practice. It is a rapidly evolving technology with certain advantages and with unique challenges that include low imaging quality and high variability. From the perspective of image analysis, it is essential to develop advanced automatic US image analysis methods to assist in US diagnosis and/or to make such assessment more objective and accurate. Deep learning has recently emerged as the leading machine learning tool in various research fields, and especially in general imaging analysis and computer vision. Deep learning also shows huge potential for various automatic US image analysis tasks. This review first briefly introduces several popular deep learning architectures, and then summarizes and thoroughly discusses their applications in various specific tasks in US image analysis, such as classification, detection, and segmentation. Finally, the open challenges and potential trends of the future application of deep learning in medical US image analysis are discussed." @default.
- W2913559493 created "2019-02-21" @default.
- W2913559493 creator A5001212991 @default.
- W2913559493 creator A5017262410 @default.
- W2913559493 creator A5046543349 @default.
- W2913559493 creator A5049714991 @default.
- W2913559493 creator A5056486566 @default.
- W2913559493 creator A5063481044 @default.
- W2913559493 creator A5065374358 @default.
- W2913559493 creator A5065927198 @default.
- W2913559493 date "2019-04-01" @default.
- W2913559493 modified "2023-10-16" @default.
- W2913559493 title "Deep Learning in Medical Ultrasound Analysis: A Review" @default.
- W2913559493 cites W1981989535 @default.
- W2913559493 cites W2023785047 @default.
- W2913559493 cites W2061715187 @default.
- W2913559493 cites W2061789203 @default.
- W2913559493 cites W2061882919 @default.
- W2913559493 cites W2064675550 @default.
- W2913559493 cites W2082941960 @default.
- W2913559493 cites W2084415465 @default.
- W2913559493 cites W2084783417 @default.
- W2913559493 cites W2087217702 @default.
- W2913559493 cites W2100495367 @default.
- W2913559493 cites W2101689475 @default.
- W2913559493 cites W2107878631 @default.
- W2913559493 cites W2117539524 @default.
- W2913559493 cites W2119249988 @default.
- W2913559493 cites W2129259959 @default.
- W2913559493 cites W2148234126 @default.
- W2913559493 cites W2155831290 @default.
- W2913559493 cites W2157117929 @default.
- W2913559493 cites W2157331557 @default.
- W2913559493 cites W2163922914 @default.
- W2913559493 cites W2164700406 @default.
- W2913559493 cites W2165698076 @default.
- W2913559493 cites W2169624977 @default.
- W2913559493 cites W2253429366 @default.
- W2913559493 cites W2288062769 @default.
- W2913559493 cites W2292862470 @default.
- W2913559493 cites W2301358467 @default.
- W2913559493 cites W2317789088 @default.
- W2913559493 cites W2318872361 @default.
- W2913559493 cites W2341106171 @default.
- W2913559493 cites W2345010043 @default.
- W2913559493 cites W2346062110 @default.
- W2913559493 cites W2509685700 @default.
- W2913559493 cites W2518674481 @default.
- W2913559493 cites W2520016695 @default.
- W2913559493 cites W2533800772 @default.
- W2913559493 cites W2547722133 @default.
- W2913559493 cites W2551562422 @default.
- W2913559493 cites W2556177465 @default.
- W2913559493 cites W2559435482 @default.
- W2913559493 cites W2578388616 @default.
- W2913559493 cites W2581519355 @default.
- W2913559493 cites W2586932530 @default.
- W2913559493 cites W2592929672 @default.
- W2913559493 cites W2593232761 @default.
- W2913559493 cites W2598799153 @default.
- W2913559493 cites W2602001632 @default.
- W2913559493 cites W2604009228 @default.
- W2913559493 cites W2614217642 @default.
- W2913559493 cites W2618530766 @default.
- W2913559493 cites W2621028221 @default.
- W2913559493 cites W2623570296 @default.
- W2913559493 cites W2632480913 @default.
- W2913559493 cites W2725008604 @default.
- W2913559493 cites W2731899572 @default.
- W2913559493 cites W2734523407 @default.
- W2913559493 cites W2735582614 @default.
- W2913559493 cites W2735666957 @default.
- W2913559493 cites W2740028789 @default.
- W2913559493 cites W2741754476 @default.
- W2913559493 cites W2744003653 @default.
- W2913559493 cites W2744383503 @default.
- W2913559493 cites W2744692634 @default.
- W2913559493 cites W2750792525 @default.
- W2913559493 cites W2759207985 @default.
- W2913559493 cites W2768673271 @default.
- W2913559493 cites W2777186991 @default.
- W2913559493 cites W2919115771 @default.
- W2913559493 cites W2963104294 @default.
- W2913559493 cites W639708223 @default.
- W2913559493 doi "https://doi.org/10.1016/j.eng.2018.11.020" @default.
- W2913559493 hasPublicationYear "2019" @default.
- W2913559493 type Work @default.
- W2913559493 sameAs 2913559493 @default.
- W2913559493 citedByCount "413" @default.
- W2913559493 countsByYear W29135594932018 @default.
- W2913559493 countsByYear W29135594932019 @default.
- W2913559493 countsByYear W29135594932020 @default.
- W2913559493 countsByYear W29135594932021 @default.
- W2913559493 countsByYear W29135594932022 @default.
- W2913559493 countsByYear W29135594932023 @default.
- W2913559493 crossrefType "journal-article" @default.
- W2913559493 hasAuthorship W2913559493A5001212991 @default.
- W2913559493 hasAuthorship W2913559493A5017262410 @default.