Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913642498> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2913642498 abstract "Breast cancer accounts for 22.9% of diagnosed cancers and it is the third highest cause of cancer-related mortality worldwide. According to the National Cancer Institute, early diagnosis of breast cancer is of utmost importance in effective treatment for increasing the survival rate for this disease. The diagnosis of breast cancer is mainly performed by periodically screening the breast region by human experts to be able to detect a potential threat at an early stage. However, the screening outcomes are highly detailed images that might be confusing in some cases considering the capabilities of the human visual system. For this reason, advanced computer-based systems are developed in order to support the radiologists in recent years. This collaboration is found particularly useful to assist radiologists in diagnosing subtle abnormalities appear in the screening that might not be obvious to the eye otherwise. In this thesis, we investigated the power of deep learning algorithms in detecting microcalcification lesions which are one of the most common signs of breast cancer. We propose a performance comparison between different kinds of neural network architectures (SqueezeNet and Inception ResNet) together with a powerful data augmentation operation that allows us to train these networks with publicly available datasets. After analyzing the performance of these neural networks, we further inspected the transfer learning capabilities of these solutions to be applied on full-field digital mammography. The novelty of our approach relies on the efficiency of using the publicly available datasets and the power of feature extraction capabilities of both relatively smaller and very deep neural network architectures in microcalcification detection task. The proposed pipeline is capable of detecting microcalcifications both in screen film and full-field digital mammograms with AUC values of 0.99 and 0.98 respectively. To our knowledge, this performance represents the state of the art in microcalcification detection in the literature which consistently beats human performance at the same time." @default.
- W2913642498 created "2019-02-21" @default.
- W2913642498 creator A5033113973 @default.
- W2913642498 date "2018-10-29" @default.
- W2913642498 modified "2023-09-27" @default.
- W2913642498 title "Computer-aided detection of microcalcifications in mammography using deep neural networks" @default.
- W2913642498 hasPublicationYear "2018" @default.
- W2913642498 type Work @default.
- W2913642498 sameAs 2913642498 @default.
- W2913642498 citedByCount "0" @default.
- W2913642498 crossrefType "journal-article" @default.
- W2913642498 hasAuthorship W2913642498A5033113973 @default.
- W2913642498 hasConcept C108583219 @default.
- W2913642498 hasConcept C119857082 @default.
- W2913642498 hasConcept C121608353 @default.
- W2913642498 hasConcept C126322002 @default.
- W2913642498 hasConcept C138885662 @default.
- W2913642498 hasConcept C154945302 @default.
- W2913642498 hasConcept C27206212 @default.
- W2913642498 hasConcept C2778738651 @default.
- W2913642498 hasConcept C2780472235 @default.
- W2913642498 hasConcept C2781129008 @default.
- W2913642498 hasConcept C2781281974 @default.
- W2913642498 hasConcept C41008148 @default.
- W2913642498 hasConcept C50644808 @default.
- W2913642498 hasConcept C530470458 @default.
- W2913642498 hasConcept C71924100 @default.
- W2913642498 hasConceptScore W2913642498C108583219 @default.
- W2913642498 hasConceptScore W2913642498C119857082 @default.
- W2913642498 hasConceptScore W2913642498C121608353 @default.
- W2913642498 hasConceptScore W2913642498C126322002 @default.
- W2913642498 hasConceptScore W2913642498C138885662 @default.
- W2913642498 hasConceptScore W2913642498C154945302 @default.
- W2913642498 hasConceptScore W2913642498C27206212 @default.
- W2913642498 hasConceptScore W2913642498C2778738651 @default.
- W2913642498 hasConceptScore W2913642498C2780472235 @default.
- W2913642498 hasConceptScore W2913642498C2781129008 @default.
- W2913642498 hasConceptScore W2913642498C2781281974 @default.
- W2913642498 hasConceptScore W2913642498C41008148 @default.
- W2913642498 hasConceptScore W2913642498C50644808 @default.
- W2913642498 hasConceptScore W2913642498C530470458 @default.
- W2913642498 hasConceptScore W2913642498C71924100 @default.
- W2913642498 hasLocation W29136424981 @default.
- W2913642498 hasOpenAccess W2913642498 @default.
- W2913642498 hasPrimaryLocation W29136424981 @default.
- W2913642498 hasRelatedWork W1511886885 @default.
- W2913642498 hasRelatedWork W1589801588 @default.
- W2913642498 hasRelatedWork W2390684272 @default.
- W2913642498 hasRelatedWork W2792795776 @default.
- W2913642498 hasRelatedWork W2811149857 @default.
- W2913642498 hasRelatedWork W2949971795 @default.
- W2913642498 hasRelatedWork W3006735766 @default.
- W2913642498 hasRelatedWork W3012810890 @default.
- W2913642498 hasRelatedWork W3019643114 @default.
- W2913642498 hasRelatedWork W3023402959 @default.
- W2913642498 hasRelatedWork W3088585410 @default.
- W2913642498 hasRelatedWork W3107409668 @default.
- W2913642498 hasRelatedWork W3108739154 @default.
- W2913642498 hasRelatedWork W3127426043 @default.
- W2913642498 hasRelatedWork W3135536403 @default.
- W2913642498 hasRelatedWork W3139348042 @default.
- W2913642498 hasRelatedWork W3167245633 @default.
- W2913642498 hasRelatedWork W3190493922 @default.
- W2913642498 hasRelatedWork W775403839 @default.
- W2913642498 hasRelatedWork W2278789402 @default.
- W2913642498 isParatext "false" @default.
- W2913642498 isRetracted "false" @default.
- W2913642498 magId "2913642498" @default.
- W2913642498 workType "article" @default.