Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913693402> ?p ?o ?g. }
- W2913693402 endingPage "614" @default.
- W2913693402 startingPage "614" @default.
- W2913693402 abstract "Detecting cracks within reinforced concrete is still a challenging problem, owing to the complex disturbances from the background noise. In this work, we advocate a new concrete crack damage detection model, based upon multilayer sparse feature representation and an incremental extreme learning machine (ELM), which has both favorable feature learning and classification capabilities. Specifically, by cropping and using a sliding window operation and image rotation, a large number of crack and non-crack patches are obtained from the collected concrete images. With the existing image patches, the defect region features can be quickly calculated by the multilayer sparse ELM autoencoder networks. Then, the online incremental ELM classified network is used to recognize the crack defect features. Unlike the commonly-used deep learning-based methods, the presented ELM-based crack detection model can be trained efficiently without tediously fine-tuning the entire-network parameters. Moreover, according to the ELM theory, the proposed crack detector works universally for defect feature extraction and detection. In the experiments, when compared with other recently developed crack detectors, the proposed concrete crack detection model can offer outstanding training efficiency and favorable crack detecting accuracy." @default.
- W2913693402 created "2019-02-21" @default.
- W2913693402 creator A5010841617 @default.
- W2913693402 creator A5032216635 @default.
- W2913693402 creator A5047133501 @default.
- W2913693402 creator A5052786198 @default.
- W2913693402 creator A5072186172 @default.
- W2913693402 creator A5089559746 @default.
- W2913693402 date "2019-02-12" @default.
- W2913693402 modified "2023-10-10" @default.
- W2913693402 title "Effective Crack Damage Detection Using Multilayer Sparse Feature Representation and Incremental Extreme Learning Machine" @default.
- W2913693402 cites W1520795727 @default.
- W2913693402 cites W1537019381 @default.
- W2913693402 cites W1995130521 @default.
- W2913693402 cites W2005029343 @default.
- W2913693402 cites W2008935780 @default.
- W2913693402 cites W2010425280 @default.
- W2913693402 cites W2026131661 @default.
- W2913693402 cites W2033318022 @default.
- W2913693402 cites W2086373542 @default.
- W2913693402 cites W2101674911 @default.
- W2913693402 cites W2111072639 @default.
- W2913693402 cites W2121971770 @default.
- W2913693402 cites W2141695047 @default.
- W2913693402 cites W2508122532 @default.
- W2913693402 cites W2588180165 @default.
- W2913693402 cites W2598457882 @default.
- W2913693402 cites W2626688319 @default.
- W2913693402 cites W2744548708 @default.
- W2913693402 cites W2759519751 @default.
- W2913693402 cites W2765854388 @default.
- W2913693402 cites W2767742754 @default.
- W2913693402 cites W2791057298 @default.
- W2913693402 cites W2801596954 @default.
- W2913693402 cites W2883305784 @default.
- W2913693402 cites W2884786778 @default.
- W2913693402 cites W2891336752 @default.
- W2913693402 cites W2893713665 @default.
- W2913693402 cites W2900198492 @default.
- W2913693402 cites W2903453368 @default.
- W2913693402 cites W2904186644 @default.
- W2913693402 cites W2904336702 @default.
- W2913693402 cites W2913483483 @default.
- W2913693402 cites W4298302411 @default.
- W2913693402 doi "https://doi.org/10.3390/app9030614" @default.
- W2913693402 hasPublicationYear "2019" @default.
- W2913693402 type Work @default.
- W2913693402 sameAs 2913693402 @default.
- W2913693402 citedByCount "13" @default.
- W2913693402 countsByYear W29136934022020 @default.
- W2913693402 countsByYear W29136934022021 @default.
- W2913693402 countsByYear W29136934022022 @default.
- W2913693402 countsByYear W29136934022023 @default.
- W2913693402 crossrefType "journal-article" @default.
- W2913693402 hasAuthorship W2913693402A5010841617 @default.
- W2913693402 hasAuthorship W2913693402A5032216635 @default.
- W2913693402 hasAuthorship W2913693402A5047133501 @default.
- W2913693402 hasAuthorship W2913693402A5052786198 @default.
- W2913693402 hasAuthorship W2913693402A5072186172 @default.
- W2913693402 hasAuthorship W2913693402A5089559746 @default.
- W2913693402 hasBestOaLocation W29136934021 @default.
- W2913693402 hasConcept C101738243 @default.
- W2913693402 hasConcept C119857082 @default.
- W2913693402 hasConcept C124066611 @default.
- W2913693402 hasConcept C138885662 @default.
- W2913693402 hasConcept C153180895 @default.
- W2913693402 hasConcept C154945302 @default.
- W2913693402 hasConcept C17744445 @default.
- W2913693402 hasConcept C199539241 @default.
- W2913693402 hasConcept C2776359362 @default.
- W2913693402 hasConcept C2776401178 @default.
- W2913693402 hasConcept C2780150128 @default.
- W2913693402 hasConcept C41008148 @default.
- W2913693402 hasConcept C41895202 @default.
- W2913693402 hasConcept C50644808 @default.
- W2913693402 hasConcept C52622490 @default.
- W2913693402 hasConcept C59404180 @default.
- W2913693402 hasConcept C94625758 @default.
- W2913693402 hasConceptScore W2913693402C101738243 @default.
- W2913693402 hasConceptScore W2913693402C119857082 @default.
- W2913693402 hasConceptScore W2913693402C124066611 @default.
- W2913693402 hasConceptScore W2913693402C138885662 @default.
- W2913693402 hasConceptScore W2913693402C153180895 @default.
- W2913693402 hasConceptScore W2913693402C154945302 @default.
- W2913693402 hasConceptScore W2913693402C17744445 @default.
- W2913693402 hasConceptScore W2913693402C199539241 @default.
- W2913693402 hasConceptScore W2913693402C2776359362 @default.
- W2913693402 hasConceptScore W2913693402C2776401178 @default.
- W2913693402 hasConceptScore W2913693402C2780150128 @default.
- W2913693402 hasConceptScore W2913693402C41008148 @default.
- W2913693402 hasConceptScore W2913693402C41895202 @default.
- W2913693402 hasConceptScore W2913693402C50644808 @default.
- W2913693402 hasConceptScore W2913693402C52622490 @default.
- W2913693402 hasConceptScore W2913693402C59404180 @default.
- W2913693402 hasConceptScore W2913693402C94625758 @default.
- W2913693402 hasFunder F4320321001 @default.
- W2913693402 hasFunder F4320321543 @default.
- W2913693402 hasFunder F4320322163 @default.