Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913694414> ?p ?o ?g. }
- W2913694414 endingPage "636" @default.
- W2913694414 startingPage "627" @default.
- W2913694414 abstract "In this paper, a novel feature extraction method is proposed for hyperspectral image classification using a Gaussian-Bernoulli restricted Boltzmann machine (GBRBM) in parallel. The proposed approach employs several GBRBMs with different hidden layers to extract deep features from hyperspectral images, which are nonlinear and local invariant. Based on the learned deep features, a logistic regression layer is trained for classification. The proposed approaches are carried out on two public hyperspectral datasets: Pavia University dataset and Salinas dataset, and a new dataset obtained by HySpex imaging spectrometer in the mining area in Xuzhou. The obtained results reveal that the proposed approach offers superior performance compared to traditional classifiers. The advantage of the proposed GBRBM is that it can extract deep features in an unsupervised way and reduce the prediction time by using GPU. In particular, the classification results of the mining area provide valuable suggestions to improve environmental protection." @default.
- W2913694414 created "2019-02-21" @default.
- W2913694414 creator A5015838952 @default.
- W2913694414 creator A5033017179 @default.
- W2913694414 creator A5035854210 @default.
- W2913694414 creator A5044321404 @default.
- W2913694414 creator A5047466395 @default.
- W2913694414 date "2019-02-01" @default.
- W2913694414 modified "2023-10-16" @default.
- W2913694414 title "A Parallel Gaussian–Bernoulli Restricted Boltzmann Machine for Mining Area Classification With Hyperspectral Imagery" @default.
- W2913694414 cites W1976359033 @default.
- W2913694414 cites W1984486271 @default.
- W2913694414 cites W2001141328 @default.
- W2913694414 cites W2022508996 @default.
- W2913694414 cites W2053186076 @default.
- W2913694414 cites W2056003151 @default.
- W2913694414 cites W2071709160 @default.
- W2913694414 cites W2090424610 @default.
- W2913694414 cites W2090698258 @default.
- W2913694414 cites W2097900616 @default.
- W2913694414 cites W2136922672 @default.
- W2913694414 cites W2150796457 @default.
- W2913694414 cites W2152057649 @default.
- W2913694414 cites W2154997814 @default.
- W2913694414 cites W2241001100 @default.
- W2913694414 cites W2341130385 @default.
- W2913694414 cites W2412588858 @default.
- W2913694414 cites W2472919595 @default.
- W2913694414 cites W2506684654 @default.
- W2913694414 cites W2522698497 @default.
- W2913694414 cites W2560523472 @default.
- W2913694414 cites W2607476064 @default.
- W2913694414 cites W2618530766 @default.
- W2913694414 cites W2793357412 @default.
- W2913694414 cites W4231109964 @default.
- W2913694414 cites W4238240379 @default.
- W2913694414 doi "https://doi.org/10.1109/jstars.2019.2892975" @default.
- W2913694414 hasPublicationYear "2019" @default.
- W2913694414 type Work @default.
- W2913694414 sameAs 2913694414 @default.
- W2913694414 citedByCount "39" @default.
- W2913694414 countsByYear W29136944142019 @default.
- W2913694414 countsByYear W29136944142020 @default.
- W2913694414 countsByYear W29136944142021 @default.
- W2913694414 countsByYear W29136944142022 @default.
- W2913694414 countsByYear W29136944142023 @default.
- W2913694414 crossrefType "journal-article" @default.
- W2913694414 hasAuthorship W2913694414A5015838952 @default.
- W2913694414 hasAuthorship W2913694414A5033017179 @default.
- W2913694414 hasAuthorship W2913694414A5035854210 @default.
- W2913694414 hasAuthorship W2913694414A5044321404 @default.
- W2913694414 hasAuthorship W2913694414A5047466395 @default.
- W2913694414 hasConcept C108583219 @default.
- W2913694414 hasConcept C114614502 @default.
- W2913694414 hasConcept C115961682 @default.
- W2913694414 hasConcept C121332964 @default.
- W2913694414 hasConcept C12267149 @default.
- W2913694414 hasConcept C127413603 @default.
- W2913694414 hasConcept C138885662 @default.
- W2913694414 hasConcept C146978453 @default.
- W2913694414 hasConcept C152361515 @default.
- W2913694414 hasConcept C153180895 @default.
- W2913694414 hasConcept C154945302 @default.
- W2913694414 hasConcept C159078339 @default.
- W2913694414 hasConcept C163716315 @default.
- W2913694414 hasConcept C183852935 @default.
- W2913694414 hasConcept C192576344 @default.
- W2913694414 hasConcept C199354608 @default.
- W2913694414 hasConcept C2776401178 @default.
- W2913694414 hasConcept C33390570 @default.
- W2913694414 hasConcept C33923547 @default.
- W2913694414 hasConcept C41008148 @default.
- W2913694414 hasConcept C41895202 @default.
- W2913694414 hasConcept C52622490 @default.
- W2913694414 hasConcept C62520636 @default.
- W2913694414 hasConcept C74193536 @default.
- W2913694414 hasConcept C75294576 @default.
- W2913694414 hasConcept C95623464 @default.
- W2913694414 hasConceptScore W2913694414C108583219 @default.
- W2913694414 hasConceptScore W2913694414C114614502 @default.
- W2913694414 hasConceptScore W2913694414C115961682 @default.
- W2913694414 hasConceptScore W2913694414C121332964 @default.
- W2913694414 hasConceptScore W2913694414C12267149 @default.
- W2913694414 hasConceptScore W2913694414C127413603 @default.
- W2913694414 hasConceptScore W2913694414C138885662 @default.
- W2913694414 hasConceptScore W2913694414C146978453 @default.
- W2913694414 hasConceptScore W2913694414C152361515 @default.
- W2913694414 hasConceptScore W2913694414C153180895 @default.
- W2913694414 hasConceptScore W2913694414C154945302 @default.
- W2913694414 hasConceptScore W2913694414C159078339 @default.
- W2913694414 hasConceptScore W2913694414C163716315 @default.
- W2913694414 hasConceptScore W2913694414C183852935 @default.
- W2913694414 hasConceptScore W2913694414C192576344 @default.
- W2913694414 hasConceptScore W2913694414C199354608 @default.
- W2913694414 hasConceptScore W2913694414C2776401178 @default.
- W2913694414 hasConceptScore W2913694414C33390570 @default.
- W2913694414 hasConceptScore W2913694414C33923547 @default.
- W2913694414 hasConceptScore W2913694414C41008148 @default.