Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913698966> ?p ?o ?g. }
- W2913698966 abstract "In traditional machine learning, classifiers training is typically undertaken in the setting of single-task learning, so the trained classifier can discriminate between different classes. However, this must be based on the assumption that different classes are mutually exclusive. In real applications, the above assumption does not always hold. For example, the same book may belong to multiple subjects. From this point of view, researchers were motivated to formulate multi-label learning problems. In this context, each instance can be assigned multiple labels but the classifiers training is still typically undertaken in the setting of single-task learning. When probabilistic approaches are adopted for classifiers training, multi-task learning can be enabled through transformation of a multi-labelled data set into several binary data sets. The above data transformation could usually result in the class imbalance issue. Without the above data transformation, multi-labelling of data results in an exponential increase of the number of classes, leading to fewer instances for each class and a higher difficulty for identifying each class. In addition, multi-labelling of data is very time consuming and expensive in some application areas, such as hate speech detection. In this paper, we introduce a novel formulation of the hate speech type identification problem in the setting of multi-task learning through our proposed fuzzy ensemble approach. In this setting, single-labelled data can be used for semi-supervised multi-label learning and two new metrics (detection rate and irrelevance rate) are thus proposed to measure more effectively the performance for this kind of learning tasks. We report an experimental study on identification of four types of hate speech, namely: religion, race, disability and sexual orientation. The experimental results show that our proposed fuzzy ensemble approach outperforms other popular probabilistic approaches, with an overall detection rate of 0.93." @default.
- W2913698966 created "2019-02-21" @default.
- W2913698966 creator A5019708503 @default.
- W2913698966 creator A5026944698 @default.
- W2913698966 creator A5032832551 @default.
- W2913698966 creator A5090436792 @default.
- W2913698966 date "2019-05-13" @default.
- W2913698966 modified "2023-10-06" @default.
- W2913698966 title "Fuzzy Multi-task Learning for Hate Speech Type Identification" @default.
- W2913698966 cites W1527758775 @default.
- W2913698966 cites W1593505700 @default.
- W2913698966 cites W1975423998 @default.
- W2913698966 cites W1999954155 @default.
- W2913698966 cites W2047449974 @default.
- W2913698966 cites W2114315281 @default.
- W2913698966 cites W2119531440 @default.
- W2913698966 cites W2129753586 @default.
- W2913698966 cites W2146241755 @default.
- W2913698966 cites W2340954483 @default.
- W2913698966 cites W2473555522 @default.
- W2913698966 cites W2621521942 @default.
- W2913698966 cites W2741065173 @default.
- W2913698966 cites W2766715434 @default.
- W2913698966 cites W2788090876 @default.
- W2913698966 cites W2806872289 @default.
- W2913698966 cites W3103061166 @default.
- W2913698966 cites W3125479079 @default.
- W2913698966 cites W333500581 @default.
- W2913698966 doi "https://doi.org/10.1145/3308558.3313546" @default.
- W2913698966 hasPublicationYear "2019" @default.
- W2913698966 type Work @default.
- W2913698966 sameAs 2913698966 @default.
- W2913698966 citedByCount "20" @default.
- W2913698966 countsByYear W29136989662020 @default.
- W2913698966 countsByYear W29136989662021 @default.
- W2913698966 countsByYear W29136989662022 @default.
- W2913698966 countsByYear W29136989662023 @default.
- W2913698966 crossrefType "proceedings-article" @default.
- W2913698966 hasAuthorship W2913698966A5019708503 @default.
- W2913698966 hasAuthorship W2913698966A5026944698 @default.
- W2913698966 hasAuthorship W2913698966A5032832551 @default.
- W2913698966 hasAuthorship W2913698966A5090436792 @default.
- W2913698966 hasBestOaLocation W29136989662 @default.
- W2913698966 hasConcept C104317684 @default.
- W2913698966 hasConcept C116834253 @default.
- W2913698966 hasConcept C119857082 @default.
- W2913698966 hasConcept C12267149 @default.
- W2913698966 hasConcept C136389625 @default.
- W2913698966 hasConcept C151730666 @default.
- W2913698966 hasConcept C154945302 @default.
- W2913698966 hasConcept C162324750 @default.
- W2913698966 hasConcept C185592680 @default.
- W2913698966 hasConcept C187736073 @default.
- W2913698966 hasConcept C204241405 @default.
- W2913698966 hasConcept C2777212361 @default.
- W2913698966 hasConcept C2779343474 @default.
- W2913698966 hasConcept C2780451532 @default.
- W2913698966 hasConcept C28006648 @default.
- W2913698966 hasConcept C41008148 @default.
- W2913698966 hasConcept C49937458 @default.
- W2913698966 hasConcept C50644808 @default.
- W2913698966 hasConcept C55493867 @default.
- W2913698966 hasConcept C59822182 @default.
- W2913698966 hasConcept C66905080 @default.
- W2913698966 hasConcept C86803240 @default.
- W2913698966 hasConcept C95623464 @default.
- W2913698966 hasConceptScore W2913698966C104317684 @default.
- W2913698966 hasConceptScore W2913698966C116834253 @default.
- W2913698966 hasConceptScore W2913698966C119857082 @default.
- W2913698966 hasConceptScore W2913698966C12267149 @default.
- W2913698966 hasConceptScore W2913698966C136389625 @default.
- W2913698966 hasConceptScore W2913698966C151730666 @default.
- W2913698966 hasConceptScore W2913698966C154945302 @default.
- W2913698966 hasConceptScore W2913698966C162324750 @default.
- W2913698966 hasConceptScore W2913698966C185592680 @default.
- W2913698966 hasConceptScore W2913698966C187736073 @default.
- W2913698966 hasConceptScore W2913698966C204241405 @default.
- W2913698966 hasConceptScore W2913698966C2777212361 @default.
- W2913698966 hasConceptScore W2913698966C2779343474 @default.
- W2913698966 hasConceptScore W2913698966C2780451532 @default.
- W2913698966 hasConceptScore W2913698966C28006648 @default.
- W2913698966 hasConceptScore W2913698966C41008148 @default.
- W2913698966 hasConceptScore W2913698966C49937458 @default.
- W2913698966 hasConceptScore W2913698966C50644808 @default.
- W2913698966 hasConceptScore W2913698966C55493867 @default.
- W2913698966 hasConceptScore W2913698966C59822182 @default.
- W2913698966 hasConceptScore W2913698966C66905080 @default.
- W2913698966 hasConceptScore W2913698966C86803240 @default.
- W2913698966 hasConceptScore W2913698966C95623464 @default.
- W2913698966 hasLocation W29136989661 @default.
- W2913698966 hasLocation W29136989662 @default.
- W2913698966 hasOpenAccess W2913698966 @default.
- W2913698966 hasPrimaryLocation W29136989661 @default.
- W2913698966 hasRelatedWork W2010693867 @default.
- W2913698966 hasRelatedWork W2171095014 @default.
- W2913698966 hasRelatedWork W2264315528 @default.
- W2913698966 hasRelatedWork W2538661024 @default.
- W2913698966 hasRelatedWork W2961085424 @default.
- W2913698966 hasRelatedWork W2981850339 @default.
- W2913698966 hasRelatedWork W3193517282 @default.