Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913699554> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2913699554 endingPage "14" @default.
- W2913699554 startingPage "1" @default.
- W2913699554 abstract "Plants play a crucial role in the lives of all living things. A risk of extinction exists for many plants, hence many botanists and scientists are working in order to protect plants and plant diversity. Plant identification is the most important part of studies carried out for this purpose. In order to identify plants more accurately, different approaches have been used in the studies to date. One of these approaches is plant identification through leaf recognition, and is the basis of many conducted studies. It can be used for automatic plant recognition in the area of botany, the food sector, industry, medicine, and in many more areas too. In this study, image processing based on feature extraction methods such as color features, vein features, Fourier Descriptors (FD), and Gray-Level Co-occurrence Matrix (GLCM) methods are used. This study suggests the use of features extracted from leaves divided into two or four parts, instead of extracting for the whole leaf. Both the individual and combined performances of each feature extraction method are calculated by Extreme Learning Machines (ELM) classifier. The suggested approach has been applied to the Flavia leaf dataset. 10-fold cross-validation was used to evaluate the accuracy of the proposed method, which was then compared and tabulated with methods from other studies. The evaluated accuracy of the proposed method on the Flavia leaf dataset was calculated as 99.10%." @default.
- W2913699554 created "2019-02-21" @default.
- W2913699554 creator A5077647596 @default.
- W2913699554 creator A5083111912 @default.
- W2913699554 date "2019-07-01" @default.
- W2913699554 modified "2023-10-16" @default.
- W2913699554 title "Recognition of plant leaves: An approach with hybrid features produced by dividing leaf images into two and four parts" @default.
- W2913699554 cites W1858660163 @default.
- W2913699554 cites W1972847581 @default.
- W2913699554 cites W2044465660 @default.
- W2913699554 cites W2045947690 @default.
- W2913699554 cites W2061272711 @default.
- W2913699554 cites W2111072639 @default.
- W2913699554 cites W2122641940 @default.
- W2913699554 cites W2144004426 @default.
- W2913699554 cites W2160867523 @default.
- W2913699554 cites W2206862709 @default.
- W2913699554 cites W2334211951 @default.
- W2913699554 cites W2461102141 @default.
- W2913699554 cites W2463468632 @default.
- W2913699554 cites W2470803522 @default.
- W2913699554 cites W2508799462 @default.
- W2913699554 cites W2513925194 @default.
- W2913699554 cites W2519976284 @default.
- W2913699554 cites W4367590675 @default.
- W2913699554 cites W978857790 @default.
- W2913699554 cites W3022814278 @default.
- W2913699554 doi "https://doi.org/10.1016/j.amc.2019.01.054" @default.
- W2913699554 hasPublicationYear "2019" @default.
- W2913699554 type Work @default.
- W2913699554 sameAs 2913699554 @default.
- W2913699554 citedByCount "31" @default.
- W2913699554 countsByYear W29136995542019 @default.
- W2913699554 countsByYear W29136995542020 @default.
- W2913699554 countsByYear W29136995542021 @default.
- W2913699554 countsByYear W29136995542022 @default.
- W2913699554 countsByYear W29136995542023 @default.
- W2913699554 crossrefType "journal-article" @default.
- W2913699554 hasAuthorship W2913699554A5077647596 @default.
- W2913699554 hasAuthorship W2913699554A5083111912 @default.
- W2913699554 hasConcept C115961682 @default.
- W2913699554 hasConcept C116834253 @default.
- W2913699554 hasConcept C153180895 @default.
- W2913699554 hasConcept C154945302 @default.
- W2913699554 hasConcept C2776091240 @default.
- W2913699554 hasConcept C2985861186 @default.
- W2913699554 hasConcept C33923547 @default.
- W2913699554 hasConcept C41008148 @default.
- W2913699554 hasConcept C52622490 @default.
- W2913699554 hasConcept C59822182 @default.
- W2913699554 hasConcept C86803240 @default.
- W2913699554 hasConcept C95623464 @default.
- W2913699554 hasConceptScore W2913699554C115961682 @default.
- W2913699554 hasConceptScore W2913699554C116834253 @default.
- W2913699554 hasConceptScore W2913699554C153180895 @default.
- W2913699554 hasConceptScore W2913699554C154945302 @default.
- W2913699554 hasConceptScore W2913699554C2776091240 @default.
- W2913699554 hasConceptScore W2913699554C2985861186 @default.
- W2913699554 hasConceptScore W2913699554C33923547 @default.
- W2913699554 hasConceptScore W2913699554C41008148 @default.
- W2913699554 hasConceptScore W2913699554C52622490 @default.
- W2913699554 hasConceptScore W2913699554C59822182 @default.
- W2913699554 hasConceptScore W2913699554C86803240 @default.
- W2913699554 hasConceptScore W2913699554C95623464 @default.
- W2913699554 hasLocation W29136995541 @default.
- W2913699554 hasOpenAccess W2913699554 @default.
- W2913699554 hasPrimaryLocation W29136995541 @default.
- W2913699554 hasRelatedWork W2022996092 @default.
- W2913699554 hasRelatedWork W2065022631 @default.
- W2913699554 hasRelatedWork W2188464267 @default.
- W2913699554 hasRelatedWork W2784352036 @default.
- W2913699554 hasRelatedWork W2807311372 @default.
- W2913699554 hasRelatedWork W2905846897 @default.
- W2913699554 hasRelatedWork W2972035100 @default.
- W2913699554 hasRelatedWork W2995914718 @default.
- W2913699554 hasRelatedWork W4205647891 @default.
- W2913699554 hasRelatedWork W4367598285 @default.
- W2913699554 hasVolume "352" @default.
- W2913699554 isParatext "false" @default.
- W2913699554 isRetracted "false" @default.
- W2913699554 magId "2913699554" @default.
- W2913699554 workType "article" @default.