Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913707014> ?p ?o ?g. }
- W2913707014 endingPage "017008" @default.
- W2913707014 startingPage "017008" @default.
- W2913707014 abstract "Coarse particulate matter with aerodynamic diameter between 2.5 and [Formula: see text] ([Formula: see text]) air pollution is a severe environmental problem in developing countries, but its challenges to public health were rarely evaluated.We aimed to investigate the associations between day-to-day changes in [Formula: see text] and cause-specific mortality in China.We conducted a nationwide daily time-series analysis in 272 main Chinese cities from 2013 to 2015. The associations between [Formula: see text] concentrations and mortality were analyzed in each city using overdispersed generalized additive models. Two-stage Bayesian hierarchical models were used to estimate national and regional average associations, and random-effect models were used to pool city-specific concentration-response curves. Two-pollutant models were adjusted for fine particles with aerodynamic diameter [Formula: see text] ([Formula: see text]) or gaseous pollutants.Overall, we observed positive and approximately linear concentration-response associations between [Formula: see text] and daily mortality. A [Formula: see text] increase in [Formula: see text] was associated with higher mortality due to nonaccidental causes [0.23%; 95% posterior interval (PI): 0.13, 0.33], cardiovascular diseases (CVDs; 0.25%; 95% PI: 0.13, 0.37), coronary heart disease (CHD; 0.21%; 95% PI: 0.05, 0.36), stroke (0.21%; 95% PI: 0.08, 0.35), respiratory diseases (0.26%; 95% PI: 0.07, 0.46), and chronic obstructive pulmonary disease (COPD; 0.34%; 95% PI: 0.12, 0.57). Associations were stronger for cities in southern vs. northern China, with significant differences for total and cardiovascular mortality. Associations with [Formula: see text] were of similar magnitude to those for [Formula: see text] in both single- and two-pollutant models with mutual adjustment. Associations were robust to adjustment for gaseous pollutants other than nitrogen dioxide and sulfur dioxide. Meta-regression indicated that a larger positive correlation between [Formula: see text] and [Formula: see text] predicted stronger city-specific associations between [Formula: see text] and total mortality.This analysis showed significant associations between short-term [Formula: see text] exposure and daily nonaccidental and cardiopulmonary mortality based on data from 272 cities located throughout China. Associations appeared to be independent of exposure to [Formula: see text], carbon monoxide, and ozone. https://doi.org/10.1289/EHP2711." @default.
- W2913707014 created "2019-02-21" @default.
- W2913707014 creator A5007555194 @default.
- W2913707014 creator A5009590736 @default.
- W2913707014 creator A5011423021 @default.
- W2913707014 creator A5013523273 @default.
- W2913707014 creator A5045468213 @default.
- W2913707014 creator A5046362363 @default.
- W2913707014 creator A5061000770 @default.
- W2913707014 creator A5079485108 @default.
- W2913707014 creator A5079747338 @default.
- W2913707014 creator A5082142226 @default.
- W2913707014 creator A5083353634 @default.
- W2913707014 creator A5088143008 @default.
- W2913707014 date "2019-01-01" @default.
- W2913707014 modified "2023-10-14" @default.
- W2913707014 title "Associations between Coarse Particulate Matter Air Pollution and Cause-Specific Mortality: A Nationwide Analysis in 272 Chinese Cities" @default.
- W2913707014 cites W1232287347 @default.
- W2913707014 cites W1617145133 @default.
- W2913707014 cites W1863183842 @default.
- W2913707014 cites W1892595029 @default.
- W2913707014 cites W1971120393 @default.
- W2913707014 cites W1976888543 @default.
- W2913707014 cites W1977249035 @default.
- W2913707014 cites W2002252908 @default.
- W2913707014 cites W2008323789 @default.
- W2913707014 cites W2012394874 @default.
- W2913707014 cites W2020160536 @default.
- W2913707014 cites W2022981541 @default.
- W2913707014 cites W2023057212 @default.
- W2913707014 cites W2024355140 @default.
- W2913707014 cites W2024844272 @default.
- W2913707014 cites W2044727267 @default.
- W2913707014 cites W2051050100 @default.
- W2913707014 cites W2075036538 @default.
- W2913707014 cites W2088233005 @default.
- W2913707014 cites W2100421330 @default.
- W2913707014 cites W2104786214 @default.
- W2913707014 cites W2118212347 @default.
- W2913707014 cites W2126223139 @default.
- W2913707014 cites W2128319896 @default.
- W2913707014 cites W2132563406 @default.
- W2913707014 cites W2146074526 @default.
- W2913707014 cites W2153716878 @default.
- W2913707014 cites W2167905528 @default.
- W2913707014 cites W2169111245 @default.
- W2913707014 cites W2323118751 @default.
- W2913707014 cites W2417066833 @default.
- W2913707014 cites W2592449059 @default.
- W2913707014 cites W2770835944 @default.
- W2913707014 cites W2773236687 @default.
- W2913707014 cites W2795776771 @default.
- W2913707014 doi "https://doi.org/10.1289/ehp2711" @default.
- W2913707014 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6378682" @default.
- W2913707014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30702928" @default.
- W2913707014 hasPublicationYear "2019" @default.
- W2913707014 type Work @default.
- W2913707014 sameAs 2913707014 @default.
- W2913707014 citedByCount "132" @default.
- W2913707014 countsByYear W29137070142019 @default.
- W2913707014 countsByYear W29137070142020 @default.
- W2913707014 countsByYear W29137070142021 @default.
- W2913707014 countsByYear W29137070142022 @default.
- W2913707014 countsByYear W29137070142023 @default.
- W2913707014 crossrefType "journal-article" @default.
- W2913707014 hasAuthorship W2913707014A5007555194 @default.
- W2913707014 hasAuthorship W2913707014A5009590736 @default.
- W2913707014 hasAuthorship W2913707014A5011423021 @default.
- W2913707014 hasAuthorship W2913707014A5013523273 @default.
- W2913707014 hasAuthorship W2913707014A5045468213 @default.
- W2913707014 hasAuthorship W2913707014A5046362363 @default.
- W2913707014 hasAuthorship W2913707014A5061000770 @default.
- W2913707014 hasAuthorship W2913707014A5079485108 @default.
- W2913707014 hasAuthorship W2913707014A5079747338 @default.
- W2913707014 hasAuthorship W2913707014A5082142226 @default.
- W2913707014 hasAuthorship W2913707014A5083353634 @default.
- W2913707014 hasAuthorship W2913707014A5088143008 @default.
- W2913707014 hasBestOaLocation W29137070141 @default.
- W2913707014 hasConcept C126322002 @default.
- W2913707014 hasConcept C138816342 @default.
- W2913707014 hasConcept C142724271 @default.
- W2913707014 hasConcept C144024400 @default.
- W2913707014 hasConcept C149923435 @default.
- W2913707014 hasConcept C166957645 @default.
- W2913707014 hasConcept C178790620 @default.
- W2913707014 hasConcept C185592680 @default.
- W2913707014 hasConcept C191935318 @default.
- W2913707014 hasConcept C205649164 @default.
- W2913707014 hasConcept C24245907 @default.
- W2913707014 hasConcept C2776780178 @default.
- W2913707014 hasConcept C2994497548 @default.
- W2913707014 hasConcept C44249647 @default.
- W2913707014 hasConcept C559116025 @default.
- W2913707014 hasConcept C71924100 @default.
- W2913707014 hasConcept C99454951 @default.
- W2913707014 hasConceptScore W2913707014C126322002 @default.
- W2913707014 hasConceptScore W2913707014C138816342 @default.
- W2913707014 hasConceptScore W2913707014C142724271 @default.