Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913740016> ?p ?o ?g. }
- W2913740016 endingPage "334" @default.
- W2913740016 startingPage "334" @default.
- W2913740016 abstract "Accurate wind speed prediction plays a crucial role on the routine operational management of wind farms. However, the irregular characteristics of wind speed time series makes it hard to predict accurately. This study develops a novel forecasting strategy for multi-step wind speed forecasting (WSF) and illustrates its effectiveness. During the WSF process, a two-stage signal decomposition method combining ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) is exploited to decompose the empirical wind speed data. The EEMD algorithm is firstly employed to disassemble wind speed data into several intrinsic mode function (IMFs) and one residual (Res). The highest frequency component, IMF1, obtained by EEMD is further disassembled into different modes by the VMD algorithm. Then, feature selection is applied to eliminate the illusive components in the input-matrix predetermined by partial autocorrelation function (PACF) and the parameters in the proposed wavelet neural network (WNN) model are optimized for improving the forecasting performance, which are realized by hybrid backtracking search optimization algorithm (HBSA) integrating binary-valued BSA (BBSA) with real-valued BSA (RBSA), simultaneously. Combinations of Morlet function and Mexican hat function by weighted coefficient are constructed as activation functions for WNN, namely DAWNN, to enhance its regression performance. In the end, the final WSF values are obtained by assembling the prediction results of each decomposed components. Two sets of actual wind speed data are applied to evaluate and analyze the proposed forecasting strategy. Forecasting results, comparisons, and analysis illustrate that the proposed EEMD/VMD-HSBA-DAWNN is an effective model when employed in multi-step WSF." @default.
- W2913740016 created "2019-02-21" @default.
- W2913740016 creator A5020916751 @default.
- W2913740016 creator A5036548564 @default.
- W2913740016 creator A5039731992 @default.
- W2913740016 creator A5071407769 @default.
- W2913740016 date "2019-01-22" @default.
- W2913740016 modified "2023-09-26" @default.
- W2913740016 title "A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN" @default.
- W2913740016 cites W1185746543 @default.
- W2913740016 cites W1514832573 @default.
- W2913740016 cites W1871376293 @default.
- W2913740016 cites W1970978817 @default.
- W2913740016 cites W1977398352 @default.
- W2913740016 cites W1987092188 @default.
- W2913740016 cites W1994170512 @default.
- W2913740016 cites W1995140642 @default.
- W2913740016 cites W2000982976 @default.
- W2913740016 cites W2006558836 @default.
- W2913740016 cites W2011630059 @default.
- W2913740016 cites W2021826571 @default.
- W2913740016 cites W2024377782 @default.
- W2913740016 cites W2036681246 @default.
- W2913740016 cites W2044735270 @default.
- W2913740016 cites W2079522653 @default.
- W2913740016 cites W2120390927 @default.
- W2913740016 cites W2280154071 @default.
- W2913740016 cites W2284726324 @default.
- W2913740016 cites W2329476579 @default.
- W2913740016 cites W2340896543 @default.
- W2913740016 cites W2510259342 @default.
- W2913740016 cites W2518980640 @default.
- W2913740016 cites W2565476208 @default.
- W2913740016 cites W2606283685 @default.
- W2913740016 cites W2611273431 @default.
- W2913740016 cites W2617244595 @default.
- W2913740016 cites W2731024278 @default.
- W2913740016 cites W2742197121 @default.
- W2913740016 cites W2755764807 @default.
- W2913740016 cites W2755841959 @default.
- W2913740016 cites W2767124238 @default.
- W2913740016 cites W2773931999 @default.
- W2913740016 cites W2896614541 @default.
- W2913740016 cites W881861024 @default.
- W2913740016 doi "https://doi.org/10.3390/en12030334" @default.
- W2913740016 hasPublicationYear "2019" @default.
- W2913740016 type Work @default.
- W2913740016 sameAs 2913740016 @default.
- W2913740016 citedByCount "14" @default.
- W2913740016 countsByYear W29137400162019 @default.
- W2913740016 countsByYear W29137400162020 @default.
- W2913740016 countsByYear W29137400162021 @default.
- W2913740016 countsByYear W29137400162022 @default.
- W2913740016 crossrefType "journal-article" @default.
- W2913740016 hasAuthorship W2913740016A5020916751 @default.
- W2913740016 hasAuthorship W2913740016A5036548564 @default.
- W2913740016 hasAuthorship W2913740016A5039731992 @default.
- W2913740016 hasAuthorship W2913740016A5071407769 @default.
- W2913740016 hasBestOaLocation W29137400161 @default.
- W2913740016 hasConcept C105795698 @default.
- W2913740016 hasConcept C111919701 @default.
- W2913740016 hasConcept C11413529 @default.
- W2913740016 hasConcept C114775468 @default.
- W2913740016 hasConcept C119599485 @default.
- W2913740016 hasConcept C119857082 @default.
- W2913740016 hasConcept C121332964 @default.
- W2913740016 hasConcept C124101348 @default.
- W2913740016 hasConcept C127413603 @default.
- W2913740016 hasConcept C151406439 @default.
- W2913740016 hasConcept C153294291 @default.
- W2913740016 hasConcept C154945302 @default.
- W2913740016 hasConcept C155512373 @default.
- W2913740016 hasConcept C161067210 @default.
- W2913740016 hasConcept C186370098 @default.
- W2913740016 hasConcept C24338571 @default.
- W2913740016 hasConcept C25570617 @default.
- W2913740016 hasConcept C33923547 @default.
- W2913740016 hasConcept C41008148 @default.
- W2913740016 hasConcept C48677424 @default.
- W2913740016 hasConcept C5297727 @default.
- W2913740016 hasConcept C78600449 @default.
- W2913740016 hasConcept C81917197 @default.
- W2913740016 hasConceptScore W2913740016C105795698 @default.
- W2913740016 hasConceptScore W2913740016C111919701 @default.
- W2913740016 hasConceptScore W2913740016C11413529 @default.
- W2913740016 hasConceptScore W2913740016C114775468 @default.
- W2913740016 hasConceptScore W2913740016C119599485 @default.
- W2913740016 hasConceptScore W2913740016C119857082 @default.
- W2913740016 hasConceptScore W2913740016C121332964 @default.
- W2913740016 hasConceptScore W2913740016C124101348 @default.
- W2913740016 hasConceptScore W2913740016C127413603 @default.
- W2913740016 hasConceptScore W2913740016C151406439 @default.
- W2913740016 hasConceptScore W2913740016C153294291 @default.
- W2913740016 hasConceptScore W2913740016C154945302 @default.
- W2913740016 hasConceptScore W2913740016C155512373 @default.
- W2913740016 hasConceptScore W2913740016C161067210 @default.
- W2913740016 hasConceptScore W2913740016C186370098 @default.
- W2913740016 hasConceptScore W2913740016C24338571 @default.