Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913765718> ?p ?o ?g. }
- W2913765718 endingPage "162" @default.
- W2913765718 startingPage "149" @default.
- W2913765718 abstract "Thermal InfraRed (TIR) image data at high temporal and spatial resolution are required to monitor the rapid development of crops during the growing season, taking into account the fragmentation of most agricultural landscapes. Moreover, integrating high-resolution satellite TIR data to calibrate hydrological models is a powerful information to efficiently monitor crop water use. Conversely, no single sensor meets these combined requirements in the TIR spectral region. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing image data to meet the combined requirements on spatial and temporal resolution. A novel spatio-temporal data fusion workflow based on a multi-sensor multi-resolution algorithm was developed and applied to generate TIR synthetic image data at high temporal and spatial resolution. The workflow includes two steps: in the first step, synthetic daily radiance images at Top of Atmosphere (TOA) and 30-m spatial resolution (at the ground) are generated using TIR radiometric data at TOA collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) daily 1-km and Landsat 8/TIRS 16-day 30-m. This procedure is applied to two image pairs on different dates. The workflow yields an estimator to generate TIR TOA radiance data on any given date, provided a MODIS radiance image is available. The next step applies constrained unmixing of the 30 m (now considered as low-resolution) TIR images using the information about sub-pixel land-cover obtained from co-registered images at higher spatial resolution in the VNIR (Visible Near InfraRed) spectrum. In our case study, the L8/TIRS synthetic image data were unmixed to the Sentinel 2/MSI with 10 m × 10 m spatial resolution. Two geographically diverse experiments were carried out using the same procedure: one in The Netherlands to evaluate the procedure and other in Puglia (Italy) to generate a time series of the 10-m × 10-m TIR image data product. The validation experiment, where an actual TIRS image was applied as a reference, gave a RMSE value of 35.3 W/(m2 μm sr), which corresponds to a relative value of 8.5% against the TIRS reference values. The results confirm the feasibility of the proposed methodology, which yields a synthetic thermal band to integrate with the multi-spectral data provided by the S2/MSI at 10 m resolution." @default.
- W2913765718 created "2019-02-21" @default.
- W2913765718 creator A5009352255 @default.
- W2913765718 creator A5024817161 @default.
- W2913765718 creator A5071094661 @default.
- W2913765718 creator A5091178677 @default.
- W2913765718 date "2019-06-01" @default.
- W2913765718 modified "2023-10-17" @default.
- W2913765718 title "Generating high-temporal and spatial resolution TIR image data" @default.
- W2913765718 cites W1968562013 @default.
- W2913765718 cites W1977618503 @default.
- W2913765718 cites W1987592653 @default.
- W2913765718 cites W1988883312 @default.
- W2913765718 cites W1997058127 @default.
- W2913765718 cites W1998079645 @default.
- W2913765718 cites W2006273284 @default.
- W2913765718 cites W2014630223 @default.
- W2913765718 cites W2019985735 @default.
- W2913765718 cites W2023306858 @default.
- W2913765718 cites W2027756597 @default.
- W2913765718 cites W2031596845 @default.
- W2913765718 cites W2033904036 @default.
- W2913765718 cites W2035617489 @default.
- W2913765718 cites W2079786969 @default.
- W2913765718 cites W2084620831 @default.
- W2913765718 cites W2085243105 @default.
- W2913765718 cites W2085880802 @default.
- W2913765718 cites W2088603520 @default.
- W2913765718 cites W2091789707 @default.
- W2913765718 cites W2108342617 @default.
- W2913765718 cites W2111116337 @default.
- W2913765718 cites W2116327754 @default.
- W2913765718 cites W2124073857 @default.
- W2913765718 cites W2124323479 @default.
- W2913765718 cites W2161425513 @default.
- W2913765718 cites W2279566557 @default.
- W2913765718 cites W2498992705 @default.
- W2913765718 cites W2513213365 @default.
- W2913765718 cites W2614563231 @default.
- W2913765718 cites W2742026527 @default.
- W2913765718 cites W2751289896 @default.
- W2913765718 cites W2756033889 @default.
- W2913765718 cites W2758286397 @default.
- W2913765718 cites W2808839797 @default.
- W2913765718 doi "https://doi.org/10.1016/j.jag.2019.01.016" @default.
- W2913765718 hasPublicationYear "2019" @default.
- W2913765718 type Work @default.
- W2913765718 sameAs 2913765718 @default.
- W2913765718 citedByCount "5" @default.
- W2913765718 countsByYear W29137657182021 @default.
- W2913765718 countsByYear W29137657182022 @default.
- W2913765718 crossrefType "journal-article" @default.
- W2913765718 hasAuthorship W2913765718A5009352255 @default.
- W2913765718 hasAuthorship W2913765718A5024817161 @default.
- W2913765718 hasAuthorship W2913765718A5071094661 @default.
- W2913765718 hasAuthorship W2913765718A5091178677 @default.
- W2913765718 hasBestOaLocation W29137657182 @default.
- W2913765718 hasConcept C108597893 @default.
- W2913765718 hasConcept C119666444 @default.
- W2913765718 hasConcept C120665830 @default.
- W2913765718 hasConcept C121332964 @default.
- W2913765718 hasConcept C1276947 @default.
- W2913765718 hasConcept C130066347 @default.
- W2913765718 hasConcept C159078339 @default.
- W2913765718 hasConcept C160633673 @default.
- W2913765718 hasConcept C19269812 @default.
- W2913765718 hasConcept C205372480 @default.
- W2913765718 hasConcept C205649164 @default.
- W2913765718 hasConcept C23690007 @default.
- W2913765718 hasConcept C2777007095 @default.
- W2913765718 hasConcept C31972630 @default.
- W2913765718 hasConcept C39432304 @default.
- W2913765718 hasConcept C41008148 @default.
- W2913765718 hasConcept C5457282 @default.
- W2913765718 hasConcept C62520636 @default.
- W2913765718 hasConcept C62649853 @default.
- W2913765718 hasConcept C68516990 @default.
- W2913765718 hasConceptScore W2913765718C108597893 @default.
- W2913765718 hasConceptScore W2913765718C119666444 @default.
- W2913765718 hasConceptScore W2913765718C120665830 @default.
- W2913765718 hasConceptScore W2913765718C121332964 @default.
- W2913765718 hasConceptScore W2913765718C1276947 @default.
- W2913765718 hasConceptScore W2913765718C130066347 @default.
- W2913765718 hasConceptScore W2913765718C159078339 @default.
- W2913765718 hasConceptScore W2913765718C160633673 @default.
- W2913765718 hasConceptScore W2913765718C19269812 @default.
- W2913765718 hasConceptScore W2913765718C205372480 @default.
- W2913765718 hasConceptScore W2913765718C205649164 @default.
- W2913765718 hasConceptScore W2913765718C23690007 @default.
- W2913765718 hasConceptScore W2913765718C2777007095 @default.
- W2913765718 hasConceptScore W2913765718C31972630 @default.
- W2913765718 hasConceptScore W2913765718C39432304 @default.
- W2913765718 hasConceptScore W2913765718C41008148 @default.
- W2913765718 hasConceptScore W2913765718C5457282 @default.
- W2913765718 hasConceptScore W2913765718C62520636 @default.
- W2913765718 hasConceptScore W2913765718C62649853 @default.
- W2913765718 hasConceptScore W2913765718C68516990 @default.
- W2913765718 hasLocation W29137657181 @default.