Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913771521> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2913771521 endingPage "1021" @default.
- W2913771521 startingPage "1010" @default.
- W2913771521 abstract "Short-term electric load forecasting is important for evaluating the power utility performance in terms of price and income elasticities, energy transfer scheduling, unit commitment and load dispatch. Support vector regression (SVR) approach applies a simple linear regression in the high-dimensional feature space (Hilbert space) by using kernel functions and has many attractive features and profound empirical performances for small sample, nonlinearity and high dimensional dataset. However, the SVR modeling processing has computation complexity of order O(K×N3) (where N is the size of the training dataset, and K is the evaluation number of the parameter selection process). To forecast short-term power load accurately, quickly and efficiently, a sequential grid approach based support vector regression (SGA-SVR) is proposed in this work. Specifically, for a given data set, parameter regression surface is conducted in SVR modeling processing with its forecasting performance as dependent variable and the three parameters (ε,C,γ) as independent variables. Then, a novel grid algorithm is presented to provide a new way for fitting the parameter regression surface. The statistical inference is also given by introducing the asymptotic normality of a fixed grid point of parameters. The numerical experiments using SGA-SVR model demonstrate the superiority over the standard SVR model and accuracy of forecast is greatly improved especially for short-term forecasts." @default.
- W2913771521 created "2019-02-21" @default.
- W2913771521 creator A5027475930 @default.
- W2913771521 creator A5071555681 @default.
- W2913771521 creator A5082970404 @default.
- W2913771521 creator A5090973011 @default.
- W2913771521 date "2019-03-01" @default.
- W2913771521 modified "2023-10-14" @default.
- W2913771521 title "Sequential grid approach based support vector regression for short-term electric load forecasting" @default.
- W2913771521 cites W1966021193 @default.
- W2913771521 cites W1978790155 @default.
- W2913771521 cites W1997151153 @default.
- W2913771521 cites W2014484342 @default.
- W2913771521 cites W2067847508 @default.
- W2913771521 cites W2151554678 @default.
- W2913771521 cites W2175287745 @default.
- W2913771521 cites W2177950380 @default.
- W2913771521 cites W2297334139 @default.
- W2913771521 cites W2317640106 @default.
- W2913771521 cites W2492494189 @default.
- W2913771521 cites W2523477444 @default.
- W2913771521 cites W2554462191 @default.
- W2913771521 cites W2570414650 @default.
- W2913771521 cites W2586634262 @default.
- W2913771521 cites W2595507848 @default.
- W2913771521 cites W2613933396 @default.
- W2913771521 cites W2615529263 @default.
- W2913771521 cites W2800571504 @default.
- W2913771521 cites W2895418405 @default.
- W2913771521 doi "https://doi.org/10.1016/j.apenergy.2019.01.127" @default.
- W2913771521 hasPublicationYear "2019" @default.
- W2913771521 type Work @default.
- W2913771521 sameAs 2913771521 @default.
- W2913771521 citedByCount "68" @default.
- W2913771521 countsByYear W29137715212019 @default.
- W2913771521 countsByYear W29137715212020 @default.
- W2913771521 countsByYear W29137715212021 @default.
- W2913771521 countsByYear W29137715212022 @default.
- W2913771521 countsByYear W29137715212023 @default.
- W2913771521 crossrefType "journal-article" @default.
- W2913771521 hasAuthorship W2913771521A5027475930 @default.
- W2913771521 hasAuthorship W2913771521A5071555681 @default.
- W2913771521 hasAuthorship W2913771521A5082970404 @default.
- W2913771521 hasAuthorship W2913771521A5090973011 @default.
- W2913771521 hasConcept C119857082 @default.
- W2913771521 hasConcept C12267149 @default.
- W2913771521 hasConcept C126255220 @default.
- W2913771521 hasConcept C148483581 @default.
- W2913771521 hasConcept C152877465 @default.
- W2913771521 hasConcept C154945302 @default.
- W2913771521 hasConcept C33923547 @default.
- W2913771521 hasConcept C41008148 @default.
- W2913771521 hasConceptScore W2913771521C119857082 @default.
- W2913771521 hasConceptScore W2913771521C12267149 @default.
- W2913771521 hasConceptScore W2913771521C126255220 @default.
- W2913771521 hasConceptScore W2913771521C148483581 @default.
- W2913771521 hasConceptScore W2913771521C152877465 @default.
- W2913771521 hasConceptScore W2913771521C154945302 @default.
- W2913771521 hasConceptScore W2913771521C33923547 @default.
- W2913771521 hasConceptScore W2913771521C41008148 @default.
- W2913771521 hasFunder F4320321001 @default.
- W2913771521 hasLocation W29137715211 @default.
- W2913771521 hasOpenAccess W2913771521 @default.
- W2913771521 hasPrimaryLocation W29137715211 @default.
- W2913771521 hasRelatedWork W2018632273 @default.
- W2913771521 hasRelatedWork W2090763504 @default.
- W2913771521 hasRelatedWork W2130043461 @default.
- W2913771521 hasRelatedWork W2350741829 @default.
- W2913771521 hasRelatedWork W2358668433 @default.
- W2913771521 hasRelatedWork W2376932109 @default.
- W2913771521 hasRelatedWork W2382290278 @default.
- W2913771521 hasRelatedWork W2390279801 @default.
- W2913771521 hasRelatedWork W2748952813 @default.
- W2913771521 hasRelatedWork W2899084033 @default.
- W2913771521 hasVolume "238" @default.
- W2913771521 isParatext "false" @default.
- W2913771521 isRetracted "false" @default.
- W2913771521 magId "2913771521" @default.
- W2913771521 workType "article" @default.