Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913832872> ?p ?o ?g. }
- W2913832872 endingPage "787" @default.
- W2913832872 startingPage "739" @default.
- W2913832872 abstract "We investigate the long-time dynamics and optimal control problem of a diffuse interface model that describes the growth of a tumor in presence of a nutrient and surrounded by host tissues. The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction and a reaction-diffusion equation for the nutrient. The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient. In this setting, the control variable acts as an external source in the nutrient equation. First, we consider the problem of `long-time treatment' under a suitable given source and prove the convergence of any global solution to a single equilibrium as $tto+infty$. Then we consider the `finite-time treatment' of a tumor, which corresponds to an optimal control problem. Here we also allow the objective cost functional to depend on a free time variable, which represents the unknown treatment time to be optimized. We prove the existence of an optimal control and obtain first order necessary optimality conditions for both the drug concentration and the treatment time. One of the main aim of the control problem is to realize in the best possible way a desired final distribution of the tumor cells, which is expressed by the target function $phi_Omega$. By establishing the Lyapunov stability of certain equilibria of the state system (without external source), we see that $phi_{Omega}$ can be taken as a stable configuration, so that the tumor will not grow again once the finite-time treatment is completed." @default.
- W2913832872 created "2019-02-21" @default.
- W2913832872 creator A5004549584 @default.
- W2913832872 creator A5017446516 @default.
- W2913832872 creator A5078312828 @default.
- W2913832872 date "2019-03-15" @default.
- W2913832872 modified "2023-10-18" @default.
- W2913832872 title "Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth" @default.
- W2913832872 cites W1525717382 @default.
- W2913832872 cites W1550200674 @default.
- W2913832872 cites W1550687986 @default.
- W2913832872 cites W1605821011 @default.
- W2913832872 cites W1969136621 @default.
- W2913832872 cites W1980897530 @default.
- W2913832872 cites W1981520789 @default.
- W2913832872 cites W2018864417 @default.
- W2913832872 cites W2023112351 @default.
- W2913832872 cites W2028413297 @default.
- W2913832872 cites W2039254108 @default.
- W2913832872 cites W2043718735 @default.
- W2913832872 cites W2045434770 @default.
- W2913832872 cites W2046528357 @default.
- W2913832872 cites W2048378298 @default.
- W2913832872 cites W2067136385 @default.
- W2913832872 cites W2073078790 @default.
- W2913832872 cites W2081402934 @default.
- W2913832872 cites W2094116453 @default.
- W2913832872 cites W2095917371 @default.
- W2913832872 cites W2111564493 @default.
- W2913832872 cites W2111663010 @default.
- W2913832872 cites W2121727855 @default.
- W2913832872 cites W2148663080 @default.
- W2913832872 cites W2283681210 @default.
- W2913832872 cites W2329975073 @default.
- W2913832872 cites W2343778323 @default.
- W2913832872 cites W2394139940 @default.
- W2913832872 cites W2506719423 @default.
- W2913832872 cites W2520750116 @default.
- W2913832872 cites W2594425100 @default.
- W2913832872 cites W2606617955 @default.
- W2913832872 cites W2747689913 @default.
- W2913832872 cites W2748288673 @default.
- W2913832872 cites W2767357349 @default.
- W2913832872 cites W2890728388 @default.
- W2913832872 cites W2891690141 @default.
- W2913832872 cites W2962699802 @default.
- W2913832872 cites W2962777676 @default.
- W2913832872 cites W2962965237 @default.
- W2913832872 cites W2963133751 @default.
- W2913832872 cites W2963161190 @default.
- W2913832872 cites W2963181663 @default.
- W2913832872 cites W2963564907 @default.
- W2913832872 cites W2963601305 @default.
- W2913832872 cites W2963683463 @default.
- W2913832872 cites W2963768558 @default.
- W2913832872 cites W2964078192 @default.
- W2913832872 cites W2964088431 @default.
- W2913832872 cites W2964218936 @default.
- W2913832872 cites W2964264791 @default.
- W2913832872 cites W2964318577 @default.
- W2913832872 cites W2964343485 @default.
- W2913832872 cites W2987803899 @default.
- W2913832872 cites W30944321 @default.
- W2913832872 cites W3101215683 @default.
- W2913832872 cites W3104199352 @default.
- W2913832872 cites W3105707937 @default.
- W2913832872 cites W4234794606 @default.
- W2913832872 cites W4298569615 @default.
- W2913832872 cites W753727356 @default.
- W2913832872 cites W2038086615 @default.
- W2913832872 doi "https://doi.org/10.1007/s00245-019-09562-5" @default.
- W2913832872 hasPublicationYear "2019" @default.
- W2913832872 type Work @default.
- W2913832872 sameAs 2913832872 @default.
- W2913832872 citedByCount "40" @default.
- W2913832872 countsByYear W29138328722019 @default.
- W2913832872 countsByYear W29138328722020 @default.
- W2913832872 countsByYear W29138328722021 @default.
- W2913832872 countsByYear W29138328722022 @default.
- W2913832872 countsByYear W29138328722023 @default.
- W2913832872 crossrefType "journal-article" @default.
- W2913832872 hasAuthorship W2913832872A5004549584 @default.
- W2913832872 hasAuthorship W2913832872A5017446516 @default.
- W2913832872 hasAuthorship W2913832872A5078312828 @default.
- W2913832872 hasBestOaLocation W29138328722 @default.
- W2913832872 hasConcept C105795698 @default.
- W2913832872 hasConcept C112972136 @default.
- W2913832872 hasConcept C119857082 @default.
- W2913832872 hasConcept C121332964 @default.
- W2913832872 hasConcept C126255220 @default.
- W2913832872 hasConcept C134306372 @default.
- W2913832872 hasConcept C136264566 @default.
- W2913832872 hasConcept C14036430 @default.
- W2913832872 hasConcept C153240184 @default.
- W2913832872 hasConcept C154945302 @default.
- W2913832872 hasConcept C158622935 @default.
- W2913832872 hasConcept C162324750 @default.
- W2913832872 hasConcept C182365436 @default.