Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913843460> ?p ?o ?g. }
- W2913843460 endingPage "290" @default.
- W2913843460 startingPage "282" @default.
- W2913843460 abstract "Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions." @default.
- W2913843460 created "2019-02-21" @default.
- W2913843460 creator A5012982867 @default.
- W2913843460 creator A5023330203 @default.
- W2913843460 creator A5023593453 @default.
- W2913843460 creator A5031249980 @default.
- W2913843460 creator A5037959654 @default.
- W2913843460 creator A5043839950 @default.
- W2913843460 creator A5050256621 @default.
- W2913843460 creator A5051184139 @default.
- W2913843460 creator A5052838340 @default.
- W2913843460 creator A5062246119 @default.
- W2913843460 creator A5071458554 @default.
- W2913843460 creator A5073555542 @default.
- W2913843460 date "2019-01-01" @default.
- W2913843460 modified "2023-10-15" @default.
- W2913843460 title "Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network" @default.
- W2913843460 cites W1983198554 @default.
- W2913843460 cites W1987710883 @default.
- W2913843460 cites W1998898494 @default.
- W2913843460 cites W2001903432 @default.
- W2913843460 cites W2017810519 @default.
- W2913843460 cites W2020541351 @default.
- W2913843460 cites W2038122249 @default.
- W2913843460 cites W2041073071 @default.
- W2913843460 cites W2050113624 @default.
- W2913843460 cites W2054457593 @default.
- W2913843460 cites W2074593960 @default.
- W2913843460 cites W2094791588 @default.
- W2913843460 cites W2096173332 @default.
- W2913843460 cites W2098201295 @default.
- W2913843460 cites W2104871495 @default.
- W2913843460 cites W2106029302 @default.
- W2913843460 cites W2117446654 @default.
- W2913843460 cites W2118258530 @default.
- W2913843460 cites W2119002393 @default.
- W2913843460 cites W2137052779 @default.
- W2913843460 cites W2139736926 @default.
- W2913843460 cites W2142572836 @default.
- W2913843460 cites W2157734084 @default.
- W2913843460 cites W2163575276 @default.
- W2913843460 cites W2165674132 @default.
- W2913843460 cites W2171437346 @default.
- W2913843460 cites W2290195878 @default.
- W2913843460 cites W2345804659 @default.
- W2913843460 cites W2402297387 @default.
- W2913843460 cites W2412988523 @default.
- W2913843460 cites W2419892062 @default.
- W2913843460 cites W2531522378 @default.
- W2913843460 cites W2555587566 @default.
- W2913843460 cites W2558586574 @default.
- W2913843460 cites W2580692896 @default.
- W2913843460 cites W2592742128 @default.
- W2913843460 cites W2606326475 @default.
- W2913843460 cites W2612872092 @default.
- W2913843460 cites W2626606138 @default.
- W2913843460 cites W2753953057 @default.
- W2913843460 cites W2765242947 @default.
- W2913843460 cites W2766490148 @default.
- W2913843460 cites W2792771702 @default.
- W2913843460 cites W2898593560 @default.
- W2913843460 cites W2905215896 @default.
- W2913843460 cites W2950213033 @default.
- W2913843460 cites W2962756421 @default.
- W2913843460 cites W4291474301 @default.
- W2913843460 doi "https://doi.org/10.1016/j.csbj.2019.02.002" @default.
- W2913843460 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6396098" @default.
- W2913843460 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30867892" @default.
- W2913843460 hasPublicationYear "2019" @default.
- W2913843460 type Work @default.
- W2913843460 sameAs 2913843460 @default.
- W2913843460 citedByCount "18" @default.
- W2913843460 countsByYear W29138434602019 @default.
- W2913843460 countsByYear W29138434602020 @default.
- W2913843460 countsByYear W29138434602021 @default.
- W2913843460 countsByYear W29138434602022 @default.
- W2913843460 countsByYear W29138434602023 @default.
- W2913843460 crossrefType "journal-article" @default.
- W2913843460 hasAuthorship W2913843460A5012982867 @default.
- W2913843460 hasAuthorship W2913843460A5023330203 @default.
- W2913843460 hasAuthorship W2913843460A5023593453 @default.
- W2913843460 hasAuthorship W2913843460A5031249980 @default.
- W2913843460 hasAuthorship W2913843460A5037959654 @default.
- W2913843460 hasAuthorship W2913843460A5043839950 @default.
- W2913843460 hasAuthorship W2913843460A5050256621 @default.
- W2913843460 hasAuthorship W2913843460A5051184139 @default.
- W2913843460 hasAuthorship W2913843460A5052838340 @default.
- W2913843460 hasAuthorship W2913843460A5062246119 @default.
- W2913843460 hasAuthorship W2913843460A5071458554 @default.
- W2913843460 hasAuthorship W2913843460A5073555542 @default.
- W2913843460 hasBestOaLocation W29138434601 @default.
- W2913843460 hasConcept C119857082 @default.
- W2913843460 hasConcept C124101348 @default.
- W2913843460 hasConcept C138885662 @default.
- W2913843460 hasConcept C142724271 @default.
- W2913843460 hasConcept C154945302 @default.
- W2913843460 hasConcept C17744445 @default.
- W2913843460 hasConcept C188947578 @default.