Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913846632> ?p ?o ?g. }
- W2913846632 endingPage "2881" @default.
- W2913846632 startingPage "2869" @default.
- W2913846632 abstract "Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications." @default.
- W2913846632 created "2019-02-21" @default.
- W2913846632 creator A5003061872 @default.
- W2913846632 creator A5009784784 @default.
- W2913846632 creator A5012122902 @default.
- W2913846632 creator A5013881064 @default.
- W2913846632 creator A5018644308 @default.
- W2913846632 creator A5036187685 @default.
- W2913846632 creator A5045458921 @default.
- W2913846632 creator A5074344655 @default.
- W2913846632 creator A5081266619 @default.
- W2913846632 creator A5084968982 @default.
- W2913846632 creator A5087617920 @default.
- W2913846632 date "2019-10-01" @default.
- W2913846632 modified "2023-10-16" @default.
- W2913846632 title "EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations" @default.
- W2913846632 cites W1158789509 @default.
- W2913846632 cites W1601314345 @default.
- W2913846632 cites W1605366620 @default.
- W2913846632 cites W1929727337 @default.
- W2913846632 cites W1947251450 @default.
- W2913846632 cites W1963753144 @default.
- W2913846632 cites W1967545169 @default.
- W2913846632 cites W1967993123 @default.
- W2913846632 cites W1980090921 @default.
- W2913846632 cites W1989746184 @default.
- W2913846632 cites W1999653836 @default.
- W2913846632 cites W2001097956 @default.
- W2913846632 cites W2002055708 @default.
- W2913846632 cites W2005744676 @default.
- W2913846632 cites W2007554378 @default.
- W2913846632 cites W2014348006 @default.
- W2913846632 cites W2021085650 @default.
- W2913846632 cites W2025157091 @default.
- W2913846632 cites W2029797897 @default.
- W2913846632 cites W2030378532 @default.
- W2913846632 cites W2038744910 @default.
- W2913846632 cites W2041433259 @default.
- W2913846632 cites W2043729845 @default.
- W2913846632 cites W2049762839 @default.
- W2913846632 cites W2057221526 @default.
- W2913846632 cites W2059923560 @default.
- W2913846632 cites W2062900585 @default.
- W2913846632 cites W2069928051 @default.
- W2913846632 cites W2075253890 @default.
- W2913846632 cites W2076170850 @default.
- W2913846632 cites W2097982135 @default.
- W2913846632 cites W2098564458 @default.
- W2913846632 cites W2099610690 @default.
- W2913846632 cites W2101393962 @default.
- W2913846632 cites W2103193379 @default.
- W2913846632 cites W2104939439 @default.
- W2913846632 cites W2105981921 @default.
- W2913846632 cites W2116083905 @default.
- W2913846632 cites W2122098299 @default.
- W2913846632 cites W2131214576 @default.
- W2913846632 cites W2132889650 @default.
- W2913846632 cites W2136562407 @default.
- W2913846632 cites W2148601705 @default.
- W2913846632 cites W2149772057 @default.
- W2913846632 cites W2150251862 @default.
- W2913846632 cites W2152772614 @default.
- W2913846632 cites W2154053567 @default.
- W2913846632 cites W2158810025 @default.
- W2913846632 cites W2164699598 @default.
- W2913846632 cites W2171931442 @default.
- W2913846632 cites W2247338144 @default.
- W2913846632 cites W2278113816 @default.
- W2913846632 cites W2289846183 @default.
- W2913846632 cites W2291880358 @default.
- W2913846632 cites W2339248509 @default.
- W2913846632 cites W2409609761 @default.
- W2913846632 cites W2476572832 @default.
- W2913846632 cites W2512441693 @default.
- W2913846632 cites W2584167365 @default.
- W2913846632 cites W2585821407 @default.
- W2913846632 cites W2736185028 @default.
- W2913846632 cites W2740113900 @default.
- W2913846632 cites W2962905870 @default.
- W2913846632 cites W4230669233 @default.
- W2913846632 cites W4236706032 @default.
- W2913846632 cites W4242687562 @default.
- W2913846632 doi "https://doi.org/10.1109/tbme.2019.2897651" @default.
- W2913846632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30735981" @default.
- W2913846632 hasPublicationYear "2019" @default.
- W2913846632 type Work @default.
- W2913846632 sameAs 2913846632 @default.
- W2913846632 citedByCount "201" @default.
- W2913846632 countsByYear W29138466322019 @default.
- W2913846632 countsByYear W29138466322020 @default.
- W2913846632 countsByYear W29138466322021 @default.
- W2913846632 countsByYear W29138466322022 @default.
- W2913846632 countsByYear W29138466322023 @default.
- W2913846632 crossrefType "journal-article" @default.
- W2913846632 hasAuthorship W2913846632A5003061872 @default.
- W2913846632 hasAuthorship W2913846632A5009784784 @default.
- W2913846632 hasAuthorship W2913846632A5012122902 @default.
- W2913846632 hasAuthorship W2913846632A5013881064 @default.