Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913897408> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2913897408 endingPage "66" @default.
- W2913897408 startingPage "50" @default.
- W2913897408 abstract "Abstract Extracting 3D information from aerial images is an important and still challenging topic in photogrammetry and remote sensing. Height estimation from only a single aerial image is an ambiguous and ill-posed problem. To address this challenging problem, in this paper, an architecture based on a deep convolutional neural network (CNN) is proposed in order to estimate the height values from a single aerial image. Methodologies for data preprocessing, selection of training data as well as data augmentation are presented. Subsequently, a deep CNN architecture is proposed consisting of encoding and decoding steps. In the encoding part, a deep residual learning is employed for extracting the local and global features. An up-sampling approach is proposed in the decoding part for increasing the output resolution and skip connections are employed in each scale to modify the estimated height values at the object boundaries. Finally, a post-processing approach is proposed to merge the predicted height image patches and generate a seamless continuous height map. The quantitative evaluation of the proposed approaches on the ISPRS datasets indicates relative and root mean square errors of approximately 0.9 m and 3.2 m, respectively." @default.
- W2913897408 created "2019-02-21" @default.
- W2913897408 creator A5014637550 @default.
- W2913897408 creator A5052272840 @default.
- W2913897408 date "2019-03-01" @default.
- W2913897408 modified "2023-10-13" @default.
- W2913897408 title "Height estimation from single aerial images using a deep convolutional encoder-decoder network" @default.
- W2913897408 cites W1803059841 @default.
- W2913897408 cites W1893585201 @default.
- W2913897408 cites W1901129140 @default.
- W2913897408 cites W1968014753 @default.
- W2913897408 cites W1999156278 @default.
- W2913897408 cites W2027254180 @default.
- W2913897408 cites W2037061351 @default.
- W2913897408 cites W2062970449 @default.
- W2913897408 cites W2083517979 @default.
- W2913897408 cites W2110917409 @default.
- W2913897408 cites W2117539524 @default.
- W2913897408 cites W2139905387 @default.
- W2913897408 cites W2145595389 @default.
- W2913897408 cites W2166774562 @default.
- W2913897408 cites W2341130385 @default.
- W2913897408 cites W2520707372 @default.
- W2913897408 cites W2593414960 @default.
- W2913897408 cites W2746411854 @default.
- W2913897408 cites W2790713095 @default.
- W2913897408 cites W2963510064 @default.
- W2913897408 cites W2963591054 @default.
- W2913897408 cites W3105127913 @default.
- W2913897408 doi "https://doi.org/10.1016/j.isprsjprs.2019.01.013" @default.
- W2913897408 hasPublicationYear "2019" @default.
- W2913897408 type Work @default.
- W2913897408 sameAs 2913897408 @default.
- W2913897408 citedByCount "73" @default.
- W2913897408 countsByYear W29138974082019 @default.
- W2913897408 countsByYear W29138974082020 @default.
- W2913897408 countsByYear W29138974082021 @default.
- W2913897408 countsByYear W29138974082022 @default.
- W2913897408 countsByYear W29138974082023 @default.
- W2913897408 crossrefType "journal-article" @default.
- W2913897408 hasAuthorship W2913897408A5014637550 @default.
- W2913897408 hasAuthorship W2913897408A5052272840 @default.
- W2913897408 hasConcept C108583219 @default.
- W2913897408 hasConcept C111919701 @default.
- W2913897408 hasConcept C118505674 @default.
- W2913897408 hasConcept C121684516 @default.
- W2913897408 hasConcept C153180895 @default.
- W2913897408 hasConcept C154945302 @default.
- W2913897408 hasConcept C205649164 @default.
- W2913897408 hasConcept C2987819851 @default.
- W2913897408 hasConcept C31972630 @default.
- W2913897408 hasConcept C41008148 @default.
- W2913897408 hasConcept C62649853 @default.
- W2913897408 hasConcept C81363708 @default.
- W2913897408 hasConceptScore W2913897408C108583219 @default.
- W2913897408 hasConceptScore W2913897408C111919701 @default.
- W2913897408 hasConceptScore W2913897408C118505674 @default.
- W2913897408 hasConceptScore W2913897408C121684516 @default.
- W2913897408 hasConceptScore W2913897408C153180895 @default.
- W2913897408 hasConceptScore W2913897408C154945302 @default.
- W2913897408 hasConceptScore W2913897408C205649164 @default.
- W2913897408 hasConceptScore W2913897408C2987819851 @default.
- W2913897408 hasConceptScore W2913897408C31972630 @default.
- W2913897408 hasConceptScore W2913897408C41008148 @default.
- W2913897408 hasConceptScore W2913897408C62649853 @default.
- W2913897408 hasConceptScore W2913897408C81363708 @default.
- W2913897408 hasLocation W29138974081 @default.
- W2913897408 hasOpenAccess W2913897408 @default.
- W2913897408 hasPrimaryLocation W29138974081 @default.
- W2913897408 hasRelatedWork W2731899572 @default.
- W2913897408 hasRelatedWork W2732542196 @default.
- W2913897408 hasRelatedWork W2738221750 @default.
- W2913897408 hasRelatedWork W2774444957 @default.
- W2913897408 hasRelatedWork W3133861977 @default.
- W2913897408 hasRelatedWork W3156786002 @default.
- W2913897408 hasRelatedWork W3186111093 @default.
- W2913897408 hasRelatedWork W4214561993 @default.
- W2913897408 hasRelatedWork W4286512593 @default.
- W2913897408 hasRelatedWork W564581980 @default.
- W2913897408 hasVolume "149" @default.
- W2913897408 isParatext "false" @default.
- W2913897408 isRetracted "false" @default.
- W2913897408 magId "2913897408" @default.
- W2913897408 workType "article" @default.