Matches in SemOpenAlex for { <https://semopenalex.org/work/W2913964897> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2913964897 abstract "Number of use cases in healthcare are well suited as Big Data applications. In healthcare, large volumes of data are coming in and stored as unstructured big data or as structured data in relational database. In any case, Big Data is coming to embrace SQL as a common tool for querying. Developing a question and answering tool for the users that are lack of specialized skillsets and use natural languages for complex queries is a challenge that need to identify significant details, draw inferences and evaluate hypothesis as how domain experts do those. Although NLIDB systems are developed to translate a natural language queries into a database language for non-technical end users, most of the questions addressed by the systems are factoid questions and answering complex queries remains as an open research problem. The proposed auxiliary system is machine learning based and extends existing NLIDB system to help it answer the complex queries. The auxiliary system mimics the way human experts reach the answers to the complex queries. Instead of building a set of simple conditional statements as rules and invoke them as a sequence of chained actions, the proposed system decomposes complex queries into multiple simple factoid sub-queries with the goal of generating answers to each sub-query with the existing NLIDB system from the data explicitly stored in the database. The underlying NLIDB system takes sub-queries as input queries in parallel and produces query results from the data stored in the relational database. The answers to the sub-queries and the desired output labels are used to train the model and the multiclass classifier produced from the training is used to predict and answer valid input queries." @default.
- W2913964897 created "2019-02-21" @default.
- W2913964897 creator A5021000829 @default.
- W2913964897 date "2018-12-01" @default.
- W2913964897 modified "2023-09-27" @default.
- W2913964897 title "A Machine Learning Based Natural Language Question and Answering System for Healthcare Data Search using Complex Queries" @default.
- W2913964897 cites W110935435 @default.
- W2913964897 cites W1965482737 @default.
- W2913964897 cites W2066075273 @default.
- W2913964897 cites W2134489415 @default.
- W2913964897 cites W2187938785 @default.
- W2913964897 cites W2250510620 @default.
- W2913964897 cites W2269738476 @default.
- W2913964897 cites W2403325342 @default.
- W2913964897 cites W2759659428 @default.
- W2913964897 doi "https://doi.org/10.1109/bigdata.2018.8622448" @default.
- W2913964897 hasPublicationYear "2018" @default.
- W2913964897 type Work @default.
- W2913964897 sameAs 2913964897 @default.
- W2913964897 citedByCount "4" @default.
- W2913964897 countsByYear W29139648972019 @default.
- W2913964897 countsByYear W29139648972020 @default.
- W2913964897 countsByYear W29139648972021 @default.
- W2913964897 crossrefType "proceedings-article" @default.
- W2913964897 hasAuthorship W2913964897A5021000829 @default.
- W2913964897 hasConcept C124101348 @default.
- W2913964897 hasConcept C134306372 @default.
- W2913964897 hasConcept C154945302 @default.
- W2913964897 hasConcept C177264268 @default.
- W2913964897 hasConcept C192028432 @default.
- W2913964897 hasConcept C195324797 @default.
- W2913964897 hasConcept C199360897 @default.
- W2913964897 hasConcept C23123220 @default.
- W2913964897 hasConcept C33923547 @default.
- W2913964897 hasConcept C36503486 @default.
- W2913964897 hasConcept C41008148 @default.
- W2913964897 hasConcept C44291984 @default.
- W2913964897 hasConcept C510870499 @default.
- W2913964897 hasConcept C5655090 @default.
- W2913964897 hasConcept C75684735 @default.
- W2913964897 hasConcept C77088390 @default.
- W2913964897 hasConceptScore W2913964897C124101348 @default.
- W2913964897 hasConceptScore W2913964897C134306372 @default.
- W2913964897 hasConceptScore W2913964897C154945302 @default.
- W2913964897 hasConceptScore W2913964897C177264268 @default.
- W2913964897 hasConceptScore W2913964897C192028432 @default.
- W2913964897 hasConceptScore W2913964897C195324797 @default.
- W2913964897 hasConceptScore W2913964897C199360897 @default.
- W2913964897 hasConceptScore W2913964897C23123220 @default.
- W2913964897 hasConceptScore W2913964897C33923547 @default.
- W2913964897 hasConceptScore W2913964897C36503486 @default.
- W2913964897 hasConceptScore W2913964897C41008148 @default.
- W2913964897 hasConceptScore W2913964897C44291984 @default.
- W2913964897 hasConceptScore W2913964897C510870499 @default.
- W2913964897 hasConceptScore W2913964897C5655090 @default.
- W2913964897 hasConceptScore W2913964897C75684735 @default.
- W2913964897 hasConceptScore W2913964897C77088390 @default.
- W2913964897 hasLocation W29139648971 @default.
- W2913964897 hasOpenAccess W2913964897 @default.
- W2913964897 hasPrimaryLocation W29139648971 @default.
- W2913964897 hasRelatedWork W1496687100 @default.
- W2913964897 hasRelatedWork W1516384024 @default.
- W2913964897 hasRelatedWork W1602736231 @default.
- W2913964897 hasRelatedWork W1808644914 @default.
- W2913964897 hasRelatedWork W2110019277 @default.
- W2913964897 hasRelatedWork W2486199729 @default.
- W2913964897 hasRelatedWork W2554350299 @default.
- W2913964897 hasRelatedWork W2885502482 @default.
- W2913964897 hasRelatedWork W2926842231 @default.
- W2913964897 hasRelatedWork W3208804935 @default.
- W2913964897 isParatext "false" @default.
- W2913964897 isRetracted "false" @default.
- W2913964897 magId "2913964897" @default.
- W2913964897 workType "article" @default.