Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914042427> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2914042427 abstract "The purpose of this paper is to show the radar application of the deep neural networks for recognizing the micro-Doppler radar signals generated by human walking and background noises. We collected various signals considering the actual human walking motion and background noise characteristics. In this paper, unlike the previous researches that required complicated feature extractions, we directly use the FFT results of the input signal as the feature vectors. This technique helps not to use heuristic approaches to get meaningful feature vectors. We designed and analyzed MLP (Multilayer perceptron) and DNN for multiclass classifiers. According to the experimental result, the classification accuracy of MLP was measured as 89.8% for the test dataset. The classification accuracy of DNN was analyzed as 97.2% for the test dataset." @default.
- W2914042427 created "2019-02-21" @default.
- W2914042427 creator A5027004897 @default.
- W2914042427 creator A5052101536 @default.
- W2914042427 creator A5084897975 @default.
- W2914042427 date "2018-10-01" @default.
- W2914042427 modified "2023-09-28" @default.
- W2914042427 title "Radar Application of Deep Neural Networks for Recognizing Micro-Doppler Radar Signals by Human Walking and Background Noise" @default.
- W2914042427 cites W1975424657 @default.
- W2914042427 cites W2016250161 @default.
- W2914042427 cites W2046217261 @default.
- W2914042427 cites W2055590061 @default.
- W2914042427 cites W2097847401 @default.
- W2914042427 cites W2625848437 @default.
- W2914042427 hasPublicationYear "2018" @default.
- W2914042427 type Work @default.
- W2914042427 sameAs 2914042427 @default.
- W2914042427 citedByCount "0" @default.
- W2914042427 crossrefType "proceedings-article" @default.
- W2914042427 hasAuthorship W2914042427A5027004897 @default.
- W2914042427 hasAuthorship W2914042427A5052101536 @default.
- W2914042427 hasAuthorship W2914042427A5084897975 @default.
- W2914042427 hasConcept C11413529 @default.
- W2914042427 hasConcept C115961682 @default.
- W2914042427 hasConcept C138885662 @default.
- W2914042427 hasConcept C153180895 @default.
- W2914042427 hasConcept C154945302 @default.
- W2914042427 hasConcept C173801870 @default.
- W2914042427 hasConcept C179717631 @default.
- W2914042427 hasConcept C2776401178 @default.
- W2914042427 hasConcept C2778559676 @default.
- W2914042427 hasConcept C28490314 @default.
- W2914042427 hasConcept C41008148 @default.
- W2914042427 hasConcept C41895202 @default.
- W2914042427 hasConcept C50644808 @default.
- W2914042427 hasConcept C52622490 @default.
- W2914042427 hasConcept C554190296 @default.
- W2914042427 hasConcept C75172450 @default.
- W2914042427 hasConcept C76155785 @default.
- W2914042427 hasConcept C99498987 @default.
- W2914042427 hasConceptScore W2914042427C11413529 @default.
- W2914042427 hasConceptScore W2914042427C115961682 @default.
- W2914042427 hasConceptScore W2914042427C138885662 @default.
- W2914042427 hasConceptScore W2914042427C153180895 @default.
- W2914042427 hasConceptScore W2914042427C154945302 @default.
- W2914042427 hasConceptScore W2914042427C173801870 @default.
- W2914042427 hasConceptScore W2914042427C179717631 @default.
- W2914042427 hasConceptScore W2914042427C2776401178 @default.
- W2914042427 hasConceptScore W2914042427C2778559676 @default.
- W2914042427 hasConceptScore W2914042427C28490314 @default.
- W2914042427 hasConceptScore W2914042427C41008148 @default.
- W2914042427 hasConceptScore W2914042427C41895202 @default.
- W2914042427 hasConceptScore W2914042427C50644808 @default.
- W2914042427 hasConceptScore W2914042427C52622490 @default.
- W2914042427 hasConceptScore W2914042427C554190296 @default.
- W2914042427 hasConceptScore W2914042427C75172450 @default.
- W2914042427 hasConceptScore W2914042427C76155785 @default.
- W2914042427 hasConceptScore W2914042427C99498987 @default.
- W2914042427 hasOpenAccess W2914042427 @default.
- W2914042427 hasRelatedWork W1607221045 @default.
- W2914042427 hasRelatedWork W1832808418 @default.
- W2914042427 hasRelatedWork W1992601271 @default.
- W2914042427 hasRelatedWork W2055590061 @default.
- W2914042427 hasRelatedWork W2205755411 @default.
- W2914042427 hasRelatedWork W2339993175 @default.
- W2914042427 hasRelatedWork W2428160696 @default.
- W2914042427 hasRelatedWork W2811310557 @default.
- W2914042427 hasRelatedWork W2826870251 @default.
- W2914042427 hasRelatedWork W2892272844 @default.
- W2914042427 hasRelatedWork W2902682865 @default.
- W2914042427 hasRelatedWork W2903086874 @default.
- W2914042427 hasRelatedWork W2903241283 @default.
- W2914042427 hasRelatedWork W2970007256 @default.
- W2914042427 hasRelatedWork W2997725121 @default.
- W2914042427 hasRelatedWork W3104772982 @default.
- W2914042427 hasRelatedWork W3142927872 @default.
- W2914042427 hasRelatedWork W3177260119 @default.
- W2914042427 hasRelatedWork W3194019151 @default.
- W2914042427 hasRelatedWork W1844032252 @default.
- W2914042427 isParatext "false" @default.
- W2914042427 isRetracted "false" @default.
- W2914042427 magId "2914042427" @default.
- W2914042427 workType "article" @default.