Matches in SemOpenAlex for { <https://semopenalex.org/work/W2914052412> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2914052412 abstract "Low sensitivity and specificity of current diagnostic methodologies lead to frequent misdiagnosis of Alzheimer’s and other dementia, causing an extra economic and social burden. We aim to compare real word data with the largest public databases, to extract new diagnostic models for an earlier and more accurate diagnosis of cognitive impairment. We analyzed both neuropsychological, neurological, physical assessments and transcriptomic data from biosamples. We used Machine Learning approaches and biostatistical methods to analyze the transcriptome from the large-scale ADNI and AddNeuroMed international projects: we selected some genes as potential transcriptomic biomarkers and highlighted affected cellular processes. Furthermore the analysis, by machine learning, of real-world data provided by European clinical dementia centres, resulted in a small subset of comorbidities able to discriminate diagnostic classes with a good classifier performance." @default.
- W2914052412 created "2019-02-21" @default.
- W2914052412 creator A5011189588 @default.
- W2914052412 creator A5011309792 @default.
- W2914052412 creator A5017384636 @default.
- W2914052412 creator A5021137368 @default.
- W2914052412 creator A5021251044 @default.
- W2914052412 creator A5024631565 @default.
- W2914052412 creator A5026175806 @default.
- W2914052412 creator A5031345514 @default.
- W2914052412 creator A5036135292 @default.
- W2914052412 creator A5039883139 @default.
- W2914052412 creator A5040749243 @default.
- W2914052412 creator A5054544519 @default.
- W2914052412 creator A5055397503 @default.
- W2914052412 creator A5062687221 @default.
- W2914052412 creator A5064580088 @default.
- W2914052412 creator A5074793077 @default.
- W2914052412 creator A5079072155 @default.
- W2914052412 creator A5083767218 @default.
- W2914052412 date "2018-12-01" @default.
- W2914052412 modified "2023-09-27" @default.
- W2914052412 title "Mining clinical and laboratory data of neurodegenerative diseases by Machine Learning: transcriptomic biomarkers" @default.
- W2914052412 cites W1961763941 @default.
- W2914052412 cites W1986544263 @default.
- W2914052412 doi "https://doi.org/10.1109/bibm.2018.8621072" @default.
- W2914052412 hasPublicationYear "2018" @default.
- W2914052412 type Work @default.
- W2914052412 sameAs 2914052412 @default.
- W2914052412 citedByCount "2" @default.
- W2914052412 countsByYear W29140524122020 @default.
- W2914052412 countsByYear W29140524122022 @default.
- W2914052412 crossrefType "proceedings-article" @default.
- W2914052412 hasAuthorship W2914052412A5011189588 @default.
- W2914052412 hasAuthorship W2914052412A5011309792 @default.
- W2914052412 hasAuthorship W2914052412A5017384636 @default.
- W2914052412 hasAuthorship W2914052412A5021137368 @default.
- W2914052412 hasAuthorship W2914052412A5021251044 @default.
- W2914052412 hasAuthorship W2914052412A5024631565 @default.
- W2914052412 hasAuthorship W2914052412A5026175806 @default.
- W2914052412 hasAuthorship W2914052412A5031345514 @default.
- W2914052412 hasAuthorship W2914052412A5036135292 @default.
- W2914052412 hasAuthorship W2914052412A5039883139 @default.
- W2914052412 hasAuthorship W2914052412A5040749243 @default.
- W2914052412 hasAuthorship W2914052412A5054544519 @default.
- W2914052412 hasAuthorship W2914052412A5055397503 @default.
- W2914052412 hasAuthorship W2914052412A5062687221 @default.
- W2914052412 hasAuthorship W2914052412A5064580088 @default.
- W2914052412 hasAuthorship W2914052412A5074793077 @default.
- W2914052412 hasAuthorship W2914052412A5079072155 @default.
- W2914052412 hasAuthorship W2914052412A5083767218 @default.
- W2914052412 hasConcept C104317684 @default.
- W2914052412 hasConcept C119857082 @default.
- W2914052412 hasConcept C150194340 @default.
- W2914052412 hasConcept C154945302 @default.
- W2914052412 hasConcept C162317418 @default.
- W2914052412 hasConcept C2522767166 @default.
- W2914052412 hasConcept C41008148 @default.
- W2914052412 hasConcept C55493867 @default.
- W2914052412 hasConcept C70721500 @default.
- W2914052412 hasConcept C86803240 @default.
- W2914052412 hasConceptScore W2914052412C104317684 @default.
- W2914052412 hasConceptScore W2914052412C119857082 @default.
- W2914052412 hasConceptScore W2914052412C150194340 @default.
- W2914052412 hasConceptScore W2914052412C154945302 @default.
- W2914052412 hasConceptScore W2914052412C162317418 @default.
- W2914052412 hasConceptScore W2914052412C2522767166 @default.
- W2914052412 hasConceptScore W2914052412C41008148 @default.
- W2914052412 hasConceptScore W2914052412C55493867 @default.
- W2914052412 hasConceptScore W2914052412C70721500 @default.
- W2914052412 hasConceptScore W2914052412C86803240 @default.
- W2914052412 hasLocation W29140524121 @default.
- W2914052412 hasOpenAccess W2914052412 @default.
- W2914052412 hasPrimaryLocation W29140524121 @default.
- W2914052412 hasRelatedWork W2961085424 @default.
- W2914052412 hasRelatedWork W3046775127 @default.
- W2914052412 hasRelatedWork W3107602296 @default.
- W2914052412 hasRelatedWork W3170094116 @default.
- W2914052412 hasRelatedWork W3209574120 @default.
- W2914052412 hasRelatedWork W4205958290 @default.
- W2914052412 hasRelatedWork W4286629047 @default.
- W2914052412 hasRelatedWork W4306321456 @default.
- W2914052412 hasRelatedWork W4306674287 @default.
- W2914052412 hasRelatedWork W4224009465 @default.
- W2914052412 isParatext "false" @default.
- W2914052412 isRetracted "false" @default.
- W2914052412 magId "2914052412" @default.
- W2914052412 workType "article" @default.